首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定a,b,使得x-(a+bcosx)sinx当x→0时为阶数尽可能高的无穷小。
确定a,b,使得x-(a+bcosx)sinx当x→0时为阶数尽可能高的无穷小。
admin
2021-11-25
50
问题
确定a,b,使得x-(a+bcosx)sinx当x→0时为阶数尽可能高的无穷小。
选项
答案
令y=x-(a+bcosx)sinx, y’=1+bsin
2
x-(a+bcosx)cosx y"=bsin2x+[*]sin2x+(a+bcosx)sinx=asinx+2bsin2x y"’=acosx+4bcos2x 显然y(0)=0,y"(0)=0 所以令y’(0)=y"’(0)=0得[*] 故当[*]时,x-(a+bcosx)sinx为阶数尽可能高的无穷小。
解析
转载请注明原文地址:https://jikaoti.com/ti/7YlRFFFM
0
考研数学二
相关试题推荐
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),则至少存在一点ξ∈(1,3),使得φ"(ξ)<0。
设A=,且ABAT=E+2BAT,则B=_________.
设A是3阶矩阵,有特征值λ1≠λ2≠λ3,则B=(λ1E-A)(A2E—A)(λ2E-A)(λ3E-A)=_______.
求极限
两个4阶矩阵满足A2=B2,则
已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E为3阶单位矩阵.证明:矩阵A-2E可逆;
若函数f(x)在x=1处的导数存在,则极限=________.
求极限=_______.
设f(χ)在χ=0的某一邻域内有连续的四阶导数,且当χ≠0时,f(χ)≠0,若F(χ)=在χ=0点连续,则必有()
设函数f(x,y)可微,且对任意的x,y,都有,则使不等式f(x1,y1)<f(x2,y1)成立的一个充分条件是
随机试题
(2011年10月)简述公司派生分立。
半夏厚朴汤的主治功效不符合
下列为闭经病人提供的护理措施,不妥的是
龈沟液最常用的采集方法是()
属于组织缺铁表现的是
因继承、赠与、财产分割或法院判决等原因而引起的非交易过户免征印花税。()
5,16,50,153,()
九月九日(原文《九月九日忆山东兄弟》)
设n阶矩阵A非奇异(n≥2),A*是其伴随矩阵,则下列选项中,正确的是().
GeneralBanKi-moonisurgingtheBurmesegovernmentto
最新回复
(
0
)