首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
admin
2018-05-25
44
问题
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
选项
答案
A所对应的二次型为f=X
T
AX, 因为A是实对称矩阵,所以存在正交变换X=QY,使得 f=X
T
AX[*]λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
,其中λ
i
>0(i=1,2,…,n), 对任意的X≠0,因为X=QY,所以Y=Q
T
X≠0, 于是f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
>0,即对任意的X≠0有X
T
AX>0,所以X
T
AX为正定二次型,故A为正定矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/7YKRFFFM
0
考研数学三
相关试题推荐
设函数y(x)(x≥0)二阶可导且yˊ(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点(,0).(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
设f(x),g(x)在[a,b]上连续.证明:至少存在一点ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.讨论向量组β1,β2,…,βs的线性相关性.
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,χ1,χ2是分别属于λ1和λ2的特征向量.证明:χ1+χ2不是A的特征向量.
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
设则A-1=____________.
设且f′(0)存在,求a,b.
随机试题
阅读下面的词,回答问题。
A.细菌总数≤10CFU/m3B.细菌总数≤100CFU/m3C.细菌总数≤200CFU/m3D.细菌总数≤400CFU/m3E.细菌总数≤500CFU/m3Ⅱ类区域空气卫生学标准为()。
小便灼热刺痛者为尿血而痛者为
照度标准规定的照度值为()。
城市规划纲要不必涉及的内容是()。
加快进度、缩短工期对提高设备工程投资效果的作用有()。
洁净空调工程调试包括单机试运转,试运转合格后,进行带冷(热)源的不少于()h的系统正常联合试运转。
黑色闪电,既小是俄岁斯影片《黑色闪电》中的伏尔加老爷跑车,也不是在2008年北京奥运会上被冠以“黑色闪电”美誉的牙买加选手博尔特,它是真的闪电。长期以来,人们的心目中只有蓝白色闪电,这是空中的大气放电的自然现象,一般均伴有耀眼的光芒!但很少有人看
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和条件(2)单独都不充分,条件(1)和条件
中国的哈尼族多居住在向阳的山腰,依傍山势建立村寨。村寨一般为三四十户,多则数百户。村寨背后是郁郁葱葱的古树丛林,周围绿竹青翠,棕樟挺拔,间以桃树梨树,村前的梯田层层延伸到河谷。离村寨不远有清澈酣凉的泉水井。传说远古时,哈尼人住的是山洞,山高路陡,
最新回复
(
0
)