首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
admin
2019-01-14
18
问题
设α
1
,α
2
,…,α
n-1
是R
n
中线性无关的向量组,β
1
,β
2
与α
1
,α
2
,…,α
n-1
正交,则( )
选项
A、α
1
,α
2
,…,α
n-1
,β
1
必线性相关。
B、α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性无关。
C、β
1
,β
2
必线性相关。
D、β
1
,β
2
必线性无关。
答案
C
解析
由n+1个n维向量必线性相关可知B选项错;
若α
i
(i=1,2,…,n-1)是第i个分量为1,其余分量全为0的向量,β
1
是第n个分量为1,其余分量全为0的向量,β
2
是第n个分量为2,其余分量全为0的向量,则α
1
,α
2
,…,α
n-1
,β
1
线性无关,β
2
=2β
1
,所以选项A和D错误;故选C。
下证C选项正确:
因α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性相关,所以存在n+1个不全为零的常数k
1
,k
2
,…,k
n-1
,l
1
,l
2
,
使
k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+l
1
β
1
+l
2
β
2
=0,
又因为α
1
,α
2
,…,α
n-1
线性无关,所以l
1
,l
2
一定不全为零,否则α
1
,α
2
,…,α
n-1
线性相关,产生矛盾。
在上式两端分别与β
1
,β
2
作内积,有
(l
1
β
1
+l
2
β
2
,β
1
)=0, ①
(l
1
β
1
+l
2
β
2
,β
2
)=0, ②
联立两式,l
1
×①+l
2
×②可得
(l
1
β
1
+l
2
β
2
,l
1
β
1
+l
2
β
2
)=0,
从而可得 l
1
β
1
+l
2
β
2
=0,
故β
1
,β
2
必线性相关。
转载请注明原文地址:https://jikaoti.com/ti/7W1RFFFM
0
考研数学一
相关试题推荐
设A为m×n矩阵,B是n×m矩阵,证明:AB和BA有相同的非零特征值.
已知非齐次线性方程组求解方程组(Ⅰ),用其导出组的基础解系表示通解.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
求下列函数项级数的收敛域:
设函数y=f(x)在[a,b](a>0)连续,由曲线y=f(x),直线x=a,x=b及x轴围成的平面图形(如图3.12)绕y轴旋转一周得旋转体,试导出该旋转体的体积公式.
(I)设X与Y相互独立,且X~N(5,15),Y—χ2(5),求概率P{X一5>};(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<<3.5)∩(6.3<S2<9.6)}.
某装置的平均工作温度据制造厂家称低于190℃.今从一个由16台装置构成的随机样本测得工作温度的平均值和标准差分别为195℃和8℃,根据这些数据能否支持厂家结论?设a=0.05,并假定工作温度近似服从正态分布.
设有级数,(I)若=0,又(u2n—1+u2n)=(u1+u2)+(u3+u4)+…+收敛,求证:收敛.(Ⅱ)设u2n—1=。u2n=(n=1,2,…),求证:(—1)n—1u2收敛.
连续函数f(x)满足f(x)=3∫0xf(x—t)dt+2,则f(x)=________.
设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是()
随机试题
试比较髋关节与肩关节的结构。
急诊工作的范畴包括()
男性患者,26岁,肺部查体可闻及异常支气管肺泡呼吸音,其可能的诊断不包括
1982年5月,我国决定对农业部下设土地管理局,开始在不同类型的县开展()工作。
当一平面简谐机械波在弹性媒质中传播时,下述结论正确的是()。
某建设项目COD的排放浓度为30mg/L,排放量为36000m3/h,排入地表水的COD执行20g/L,地表水上游COD的浓度是18mg/L,其上游来水流量50m3/s,其去水流量40m3/s,则其ISE是()
建设项目的经济类信息不包括()。
对一般心理问题的理解正确的是()。
下列IP地址中属于B类IP地址的是______。
定义如下枚举类型:enum Number{one=1,two=2,four=4,eight=8},则枚举类型Number的取值范围是( )。
最新回复
(
0
)