首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
叙述并证明拉格朗日微分中值定理.并简述拉格朗日微分中值定理与中学数学内容的联系。
叙述并证明拉格朗日微分中值定理.并简述拉格朗日微分中值定理与中学数学内容的联系。
admin
2017-04-24
45
问题
叙述并证明拉格朗日微分中值定理.并简述拉格朗日微分中值定理与中学数学内容的联系。
选项
答案
如果函数f(χ)满足: (1)在闭区间[a,b]上连续; (2)在开区间((a,b)内可导; 则存在ξ∈(a,b),使f′(ε)=[*] 证明:已知f(χ)在闭区间[a,b]上连续,在开区间(a,b)内可导,构造辅助函数g(χ)=f(χ)-f(a)-[*](χ-a) 验证可得g(a)=g(b)=0 又因为函数g(χ)在闭区间[a,b]上连续,在开区间(a,b)内可导,且g′(χ)=f′(χ)-[*] 根据罗尔定理可知在(a,b)内至少有一点ξ使得g′(ξ)=0 即f′(ξ)-[*]=0 由此可得[*]=f′((ξ) 定理证毕。 拉格朗日中值定理在微积分学中是一个重要的理论基础,是应用数学研究函数在区间上整体形态的有力工具。拉格朗日中值定理在中学数学中应用非常广泛,如利用导数来研究函数的某些性质、证明不等式和方程根的存在性、描绘函数的图象、解决极值、最值等等。
解析
转载请注明原文地址:https://jikaoti.com/ti/7Kz9FFFM
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
“穿衣服扣扣子,如果第一粒扣子扣错了,剩余的扣子都会扣错。”习近平主席在北京大学考察期间强调,青年学生要找准方向承担使命,“人生的扣子从一开始就要扣好”。这启示我们要()。①坚持在实践中锻炼和提高自身认识能力②满怀必胜的信心勇敢地接受挫折与考验③
传统教学具有注重预设,忽视课堂生成的倾向。新课程教学主张在预设的前提下,关注生成,引导生成,强调教学是预设与生成的有机统一。然而,由于受传统教学观的影响,在实践中我们发现,仍有不少教师,或忽视生成,或回避生成,或压制生成,从而把生成扼杀在了萌芽状态,或是让
一般情况下,银行利率提高,股市会做出股票价格下降的反应。对于产生这一反应的合理解释是()。①银行业利润高于其他行业②投资者改变投资组合③投资者预期企业利润下降④股民的投资收益减少
下列四组图,正确反映违法与犯罪关系的是()。
下面是高中必修教材《生活与哲学》中“整体和部分的辩证关系”课文相关内容,根据内容,设计教学目标,并提出有效达成该目标的三条措施。(1)整体和部分的区别整体是事物的全局和发展的全过程,从数量看它是一;部分是事物的局部和发展的各个阶段.从数量上看它是多。
宋代徐玑在《黄碧》中说,“水清知酒好,山瘦识民贫”。其中所呈现的水与酒、山与民的关系告诉我们()。
为促进混合所有制经济发展,A省于2017年6月召开专家研讨会,向与会专家征求意见和建议。在现行经济社会条件下,下列建议具有可行性和针对性的是()。①探索国有企业公司制改革的有效途径,坚持因企施策②完善股份制形式,促进公有资本与非公有
“朝霞不出门,晚霞行千里。”千百年来,“观云识天”已有规律可循。与古人观天识像不同,现代气象观测可依赖的高科技手段越来越多,可以提供更精细的预报结论。由此可见()。①“观云识天”的规律产生于人们生活经验的总结②“观云
(1)叙述函数f(x)在区间[a,b]中上凸的定义,并证明f(x)=sinx在[0,π]中上凸;(2)若A、B、C为某三角形的三内角,证明sinA+sinB+sinC≤。
函数y=)f(x)的导函数f(x)的图像如图所示,x0=一1,则()。
随机试题
A.第2颈椎水平B.第4颈椎下缘C.上颌窦1/2处D.包括上颌窦E.第二棘突后0.5~1.0cm鼻咽癌面颈联合野下界放在
不属于血栓结局的是
体外检测尿液HCG的方法不包括
与金黄色葡萄球菌毒力有关的因素
医疗机构制剂使用过程中发现的不良反应,应按《药品不良反应监测管理办法》的规定予以记录,填表上报。保留病历和有关检验、检查报告单等原始记录至少()。
团队决策的方法通常有( )。
全面结算会员期货公司调整非结算会员结算准备金最低余额的,应当在()结算前向期货交易所和期货保证金安全存管监控机构报告。
班主任王老师常常用发展的角度看待课堂中的问题、冲突与矛盾。这体现了课堂管理的()原则。
下列关于信息系统的层次结构的叙述中,哪个是不正确的?
编写如下程序:DimnumAsInteger,rAsInteger,nAsInteger,iAsIntegerDimarr(5)AsIntegerPrivateSubCommand1_Click()num=12:r=2C
最新回复
(
0
)