首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解是(2,1,0,3)T+k(1,-1,2,0)T,如令αi=(ai,bi,ci,di)T, i=1,2,…,5. 试问:(Ⅰ)α1能否由α2,α3,α4线性表出? (Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
已知线性方程组 的通解是(2,1,0,3)T+k(1,-1,2,0)T,如令αi=(ai,bi,ci,di)T, i=1,2,…,5. 试问:(Ⅰ)α1能否由α2,α3,α4线性表出? (Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
admin
2016-10-20
45
问题
已知线性方程组
的通解是(2,1,0,3)
T
+k(1,-1,2,0)
T
,如令α
i
=(a
i
,b
i
,c
i
,d
i
)
T
, i=1,2,…,5.
试问:(Ⅰ)α
1
能否由α
2
,α
3
,α
4
线性表出?
(Ⅱ)α
4
能否由α
1
,α
2
,α
3
线性表出?并说明理由.
选项
答案
(Ⅰ)α
1
可由α
2
,α
3
,α
4
线性表出.因k(1,-1,2,0)
T
是相应齐次方程组Ax=0的通解,则(α
1
,α
2
,α
3
,α
4
)[*]=0,即α
1
-α
2
+2α
3
=0,所以α
1
=α
2
-2α
3
+0α
4
,即α
1
可由α
1
,α
2
,α
3
线性表出. (Ⅱ)α
4
不能用α
1
可由α
1
,α
2
,α
3
线性表出.如果α
4
能用α
1
可由α
1
,α
2
,α
3
线性表出,则r(α
1
可由α
1
,α
2
,α
3
)=r(α
1
可由α
1
,α
2
,α
3
,α
4
)=r(A). 由于Ax=0的基础解系仅一个向量,于是有r(A)=n-1=3.那么,α
1
,α
2
,α
3
线性无关,与α
1
=α
2
-2α
3
相矛盾.
解析
从线性方程组的通解可看出相应齐次方程组的通解,亦可得到列向量组的秩及列向量α
i
之间的联系.
转载请注明原文地址:https://jikaoti.com/ti/7CxRFFFM
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
用文氏图和几何概率解释两个事件A与B相互独立的含义.
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设空间区域Ω={(x,y,z)|x2+y2+z2≤a2},Ω1={(x,y,z)|x2+y2+z2≤a2,x≥0,y≥0,z≥0},则下列等式不成立的是__________.
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
求二元函数u=x2-xy+y2在点(1,1)沿方向的方向导数及梯度,并指出u在该点沿哪个方向减少的最快?沿哪个方向u的值不变化?
随机试题
肺炎球菌肺炎的主要致病力是
下列关于国有独资公司的表述中,符合《公司法》规定的是()。(2008年单项选择第10题)
信息管理任务不包括()。
股权投资基金通常用()出资。
以下关于工资指导线的表述,不正确的是()。
关于我国国家主席,下列说法不正确的是()。
多形性渗出性红斑与药物过敏性红斑最主要的区别()。
InternationalTradeSincetheendofWorldWarII,internationaltradehasdevelopeddramatically.Allcountriesinthemo
Sheapologizedfor________theparty.
Thecentralproblemofeconomicsistosatisfythepeople’sandnation’swants.Theproblemwearefacedwithisthatour【C1】___
最新回复
(
0
)