首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈c[a,6],在(a,b)内二阶可导 (Ⅰ)若fA=0,fB<0,f’+A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’2(n)=0; (Ⅱ)若fA=fB=∫abf(x)dx=0,证明:存在η∈(a,b),使得f”
设f(x)∈c[a,6],在(a,b)内二阶可导 (Ⅰ)若fA=0,fB<0,f’+A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’2(n)=0; (Ⅱ)若fA=fB=∫abf(x)dx=0,证明:存在η∈(a,b),使得f”
admin
2021-01-28
52
问题
设f(x)∈c[a,6],在(a,b)内二阶可导
(Ⅰ)若fA=0,fB<0,f’
+
A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’
2
(
n
)=0;
(Ⅱ)若fA=fB=∫
a
b
f(x)dx=0,证明:存在η∈(a,b),使得f”(η)=f(η)。
选项
答案
(Ⅰ)因为f’
+
A>0,所以存在c∈(a,6),使得fC>fA=0,因为fCfB<0, 所以存在x
0
∈(c,b),使得f(x
0
)=0;因为fA=f(x
0
)=0,由罗尔定理,存在x
i
∈(a,x
0
),使得f’(x
1
)=0。 令φ(x)=f(x)f’(x),由φA=φ(x
1
)=0,根据罗尔定理,存在ζ∈(a,x
1
)∈(a,b),使得φ’(ζ)=0.而φ’(x)=f(x)f”(x)+f’
2
(x),所以f(ζ)f”(ζ)+f’
2
(x)=0。 (Ⅱ)令F(x)=∫
0
x
f(t)dt,因为FA=FB=0,所以由罗尔定理,存在c∈(a,b),使得 F’C=0,即fC=0。 令h(x)=e
x
f(x),由hA=hC=hB=0,根据罗尔定理,存在ζ
1
∈(a,c),ζ
2
∈(c,b), 使得h’(ζ
1
)=h’(ζ
2
)=0,则h’(x)=e
x
[f(x)+f’(x)],所以f(ζ
1
)+f’(ζ
1
)=0,f(ζ
2
)+f’(ζ
2
)。 再令G(x)=e
-x
[f(x)+f’(x)],由G(ζ
1
)=G(ζ
2
)=0,根据罗尔定理,存在η∈(ζ
1
,ζ
2
)。 ∈(a,b),使得G’(η)=0,而G’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以f"(η)=f(η)。
解析
转载请注明原文地址:https://jikaoti.com/ti/73aRFFFM
0
考研数学三
相关试题推荐
已知方程组无解,则a=_______.
设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα1=α1+3α2,Aα=5α1-α2,Aα3=α1-α2+4α3.(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵Q,使得Q﹣1AQ为对角矩阵.
设X1,X2,…,Xn为来自总体X的简单随机样本,其中E(X)=μ,D(X)=σ2,令U=-Xi,V=-Xj(i≠j),则ρUV=.
设f(x)连续,且
化下述积分为极坐标系下的累次积分,则f(x,y)dy=__________.
设a1,a2,a3,是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
微分方程的通解是(其中C为任意常数)()
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
随机试题
肥胖患者膳食应采用低蛋白饮食。()
剩余价值率的表示方法有()
在产品生命周期的成长阶段,有下列某一特征()。
利润分配中的税务筹划可以从哪几方面考虑?()
在债务人企业被宣告破产时,对破产企业未履行的合同,可以决定解除或继续履行的是( )。
货币政策诸目标之间呈一致性关系的是()。
当所控制对象只有不合格品时,可以采用()。
以下关于我国的立法体制,说法不正确的是()
设(P(x,y),Q(x,y))=,n为常数,问∫LPdx+Qdy在区域D={(x,y)|(x,y)∈R2,(x,y)≠(0,0)}是否与路径无关.
Sustainabledevelopmentisappliedtojustabouteverythingfromenergytocleanwaterandeconomicgrowth,andasaresultith
最新回复
(
0
)