首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度fz(z)= ( )
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度fz(z)= ( )
admin
2016-09-19
72
问题
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度f
z
(z)= ( )
选项
A、∫
-∞
+∞
f(x,z-x)dx
B、∫
-∞
+∞
f(x,x-z)dx
C、∫
-∞
+∞
f(x,z+x)dx
D、∫
-∞
+∞
f(-x,z+x)dx
答案
C
解析
记Z的分布函数为F
Z
(z),则
F
Z
(z)=P{Z≤z}=P{Y-X≤z}=
(x,y)dxdy
=∫
-∞
+∞
dx∫
-∞
x+z
f(x,y)dy,①
其中D
z
={(x,y)|y-x≤z}如图3-1的阴影部分所示,
∫
-∞
x+z
f(x,y)dy
∫
-∞
z
f(x,u+x)du.②
将②代入①得
F
Z
(z)=∫
-∞
+∞
dx∫
-∞
z
f(x,u+x)du=∫
-∞
z
du∫
-∞
+∞
f(x,u+x)dx:
于是f
Z
(z)=
=∫
-∞
+∞
f(x,z+x)dx.
因此本题选(C).
转载请注明原文地址:https://jikaoti.com/ti/6zxRFFFM
0
考研数学三
相关试题推荐
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.(1)求收到字符ABCA的概率;(2)若收到字符
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
设随机变量X和Y,相互独立,且均服从参数为1的指数分布,V=min(X,Y),U=max(X,Y)求(1)随机变量V的概率密度fv(v);(2)E(U+V).
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知f(x,y)=x2+4xy+y2,求正交变换P,使得
随机试题
下列叙述中正确的是
翼下颌间隙内的结构主要有
关于民用建筑工程室内环境中污染物浓度检测的说法,错误的是()。
若企业融资成本为12.88%,则下列项目可行的有()。
下列筹资方式按一般情况而言,企业所承担的财务风险由大到小排列为()。
某公司2018年财务报告批准对外报出日为2019年4月30日,所得税汇算清缴于209年4月15日完成,下列事项中属于发生在日后期间的调整事项的有()。
幼儿园教育工作的评价以()为主。
1956年美国教育心理学专家布卢姆制定了目标分类系统,下列与认知目标、情感目标共同构成三大教育目标的是()。
()对于逻辑相当于烹饪对于()
译审
最新回复
(
0
)