首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求 (Ⅱ) 求J1=∫L(x,y)dx+Q(x,y)dy,其中L是椭圆周2x2+3y2=l,取逆时针方向. (Ⅲ) 求J2=∫C(x,y)dx+Q(x,y)dy,其中C是圆周x2+y2=32,取逆时针方向.
设 (Ⅰ)求 (Ⅱ) 求J1=∫L(x,y)dx+Q(x,y)dy,其中L是椭圆周2x2+3y2=l,取逆时针方向. (Ⅲ) 求J2=∫C(x,y)dx+Q(x,y)dy,其中C是圆周x2+y2=32,取逆时针方向.
admin
2017-11-23
25
问题
设
(Ⅰ)求
(Ⅱ) 求J
1
=∫
L
(x,y)dx+Q(x,y)dy,其中L是椭圆周2x
2
+3y
2
=l,取逆时针方向.
(Ⅲ) 求J
2
=∫
C
(x,y)dx+Q(x,y)dy,其中C是圆周x
2
+y
2
=3
2
,取逆时针方向.
选项
答案
(Ⅰ) [*] (Ⅱ)可考虑用格林公式求J
1
.曲线L: [*] 围成区域记为D
1
.P(x,y),Q(x,y)当(x,y)≠(一l,0)时处处 有连续偏导,(一1,0)∈D
1
,又 [*] 于是在D
1
上可用格林公式得 [*] (Ⅲ)因为 [*] 也考虑用格林公式计算J
2
.因为P,Q在点(一1,0)处没定义, 所以不能在C围成的区域D
2
上直接用格林公式.但可在D
2
中挖掉以(一1,0)为圆心,ε>0充分小为半径的圆所余下的区域中用格林公式见图. [*] 求解如下: 以(一1,0)为圆心ε>0充分小为半径作圆周C
ε
-
(取顺时针方向),C
ε
与C围成的区域记为D
ε
,在D
ε
上用格林公式得 [*] 其中C
ε
+
取逆时针方向. 用“挖洞法”求得(*)式后,可用C
ε
的方程 (x+1)
2
+y
2
=ε
2
简化被积表达式,然后用格林公式得 [*] 其中D
ε
*
是C
ε
+
所围的区域.
解析
转载请注明原文地址:https://jikaoti.com/ti/6lVRFFFM
0
考研数学一
相关试题推荐
设函数f(x,y)可微,又f(0,0)=0,fx’(0,0)=a,fy’(0,0)=b,且φ(t)=f(t,t2)],求φ’(0).
本题考查典型的有理函数的不定积分,首先凑微分,然后将分母配方.[*]
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足的解.求F(x)关于x的幂级数;
设收敛,举例说明级数不一定收敛;若是正项收敛级数,证明一定收敛.
设f(x)是连续函数.求初值问题的解,其中a>0;
已知f(x)在x=0的某个邻域内连续,且f(0)=0.=2,则在点x=0处f(x)
随机试题
患者的权利包括()
某产妇会阴侧切伤口部位有硬结发生,则应
A.1g~3gB.0.3g~0.6gC.3g~6gD.3g~9gE.0.03g~0.06g《中国药典》规定,马钱子的内服用量为
下列关于银行存款开户的说法,错误的是()。
国际税收中所指的国际重复征税一般属于()。
“十五”期间,我国仍将采用积极的财政政策和稳健的货币政策,下列属于货币政策内容的是()。①利息税②利率③发行国债④调控货币总量
艺术审美教育的特点是()、()。
针对PowerPoint幻灯片中图片对象的操作,描述错误的是()。
ThereissomethingbadlywrongwiththewaystandardsforschoolsciencebeingsetintheUS.WhentheTexasStateBoardofEduc
A、JapanesestudentsstudymuchharderthanColumbianstudents.B、ColumbianstudentsscorehigherthanJapanesestudentsinmaths
最新回复
(
0
)