首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵B≠0,且B的每一个列向量都是以下方程组的解: (Ⅰ)求λ值; (Ⅱ)证明∣B∣=0.
已知三阶矩阵B≠0,且B的每一个列向量都是以下方程组的解: (Ⅰ)求λ值; (Ⅱ)证明∣B∣=0.
admin
2015-12-22
16
问题
已知三阶矩阵B≠0,且B的每一个列向量都是以下方程组的解:
(Ⅰ)求λ值;
(Ⅱ)证明∣B∣=0.
选项
答案
方程组AX=0有非零解,秩(A)<3,则其三阶子行列式必等于0,从而求出λ.可用反证法证明∣B∣=0. 解 (Ⅰ)因B≠0,故B中至少有一个非零列向量,于是推出所给齐次方程组AX=0有非零解,故其系数矩阵的秩(A)<3,则其三阶子式必等于0,即 [*] (Ⅱ)因B的每一列向量都是方程组的解,故有 AB=O. 由A≠O,则必有∣B∣=0. 事实上,若∣B∣≠0,则B可逆,在AB=O两边右乘B
-1
必有 ABB
-1
=OB
-1
,A=0, 这与A≠0的事实矛盾,故∣B∣=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/6criFFFM
0
考研数学二
相关试题推荐
下列关于酒的诗词与作者对应不正确的是()。
被称为“中国不败而败”的战争是()。
古车上的篷盖有的用席篷,有的用麻布之类制作,顶上比较陡,到篷边上挑起而成为曲线。这样的好处,一是可以不挡住乘车人的视线,二是可以使顶篷上的雨水排得更远。这段话的主要内容是()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
对函数f(χ)(4-t)ln(1+t)dt().
设A为m×n矩阵,且r(A)=r(A)r<n,其中=(A┇b).(Ⅰ)证明方程组AX=b有且仅有,n-r+1个线性无关解;(Ⅱ)若,有三个线性无关解,求a,b的值及方程组的通解.
设A为三阶矩阵,A的三个特征值为λ1=-2,λ2=1,λ3=2,A*是A的伴随矩阵,则A11+A22+A33=_______.
计算二重积分I=(x+y2)dxdy,其中D={(x,y)|x2+y2≤x+y}.
在方程组中a1+a2一b1+b2,证明该方程组有解,并求出其通解.
把当χ→0时的无穷小量α=ln(1+χ2)-ln(1-χ4),β=tantdt,y=arctanχ-χ排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
随机试题
当发现有人触电,而开关又不在附近时,正确的做法是________。
a_______adj.绝对的
编制监理总进度计划的依据有( )。
民事诉讼的基本特征包括()。
以下不属于商业银行内部控制必须贯彻的原则的是()。
以下属于客户理财需求短期目标的有()。
格兰仕前身是梁庆德在1979年成立的广东顺德桂洲羽绒厂。1991年,格兰仕最高决策层普遍认为,羽绒服装及其他制品的出口前景不佳,并达成共识:从现行业转移到一个成长性更好的行业。经过市场调查,确定微波炉为主导产品(当时,国内微波炉市场刚开始发育,生产企业只有
微分方程y’’+y=-2x的通解为________.
A.acceptB.unquantifiableC.useD.whatE.purchasedF.consumedG.encouragedH.climbingI.predictablyJ.actually
Asregardssocialconventions,wemustsayawordaboutthewell-knownEnglishclasssystem.Thisisanembarrassingsubjectfor
最新回复
(
0
)