首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
admin
2016-07-22
33
问题
设A
m×n
,r(A)=m,B
n×(n-m)
,r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
选项
答案
将B按列分块,设B=[β
1
,β
2
,…,β
n-m
],因已知AB=O,故知B的每一列均是AX=0的解,由r(A)=m,r(B)=n-m知,β
1
,β
2
,…,β
n-m
是AX=0的基础解系. 若η是AX=0的解向量,则η可由基础解系β
1
,β
2
,…,β
n-m
线性表出,且表出法唯一,即 η=x
1
β
1
+x
2
β
2
+…+x
n-m
β
n-m
=[β
1
,β
2
,…,β
n-m
][*]=Bξ, 即存在唯一的考,使Bξ=η.
解析
转载请注明原文地址:https://jikaoti.com/ti/6QPRFFFM
0
考研数学一
相关试题推荐
设f(x)在[0,﹢∞)上连续,且f(x)=dt证明:方程2f(x)=x在(0,﹢∞)内有唯一实根ξ
已知曲线L的极坐标方程为r=1+cosθ(0≤θ≤π/2)求曲线L在θ=π/4对应点处的切线T的直角坐标方程
设P(x0,y0)为椭圆3x2+a2y2=3a2(a>0)在第一象限部分上的一点,已知在P点处椭圆的切线、椭圆及两坐标轴所围图形D的面积的最小值为2(1-1/4π)求D绕x轴旋转一周所得旋转体的体积V
设∫xx+f(x)=tetdt,则a=________
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=().
假设A是n阶方阵,其秩(A)=r<n,那么在A的n个行向量中().
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
随机试题
行政机构改革的原则。
造成腹股沟疝修补术后复发的因素不包括
商业银行应基于风险评估过程中确定的()确定资本需求。
谷类食物主要提供()。
企业中不同员工的能力有偏差,具体的工作分工也不同,因此员工培训要坚持()。
莽草酸可用于合成药物达菲,其结构如图5。下列关于莽草酸的说法正确的是()。
ShoppinghabitsintheUnitedStateshavechangedgreatlyinthelastquarterofthe20thcentury.Earlyinthe1900smostAmeri
依据现行宪法,中华人民共和国哪一国家机构领导全国武装力量?()
人们之所以感觉到“晕车”主要是哪种感觉受到了强烈刺激?()
近几年,国内考取心理咨询师证的人越来越多。可以这样讲,所有从事心理咨询工作的人都想获得心理咨询师证,小李也想考取心理咨询师证,所以他一定想从事心理咨询工作。以下哪一项为真,最能加强上面的论述?
最新回复
(
0
)