首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
admin
2017-07-10
39
问题
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+B
T
A正定.
选项
答案
必要性 取B=A
-1
,则AB+B
T
A=E+(A
-1
)
T
A=2E,所以AB+B
T
A是正定矩阵. 充分性 用反证法.若A不是可逆矩阵,则r(A)<n,于是存在实向量x
0
≠0使得Ax
0
=0.因为A是实对称矩阵,B是实矩阵,于是有 x
0
T
(AB+B
T
A)x
0
=(Ax
0
)
T
Bx
0
+x
0
T
B
T
(Ax
0
)=0, 这与AB+B
T
A是正定矩阵矛盾.
解析
转载请注明原文地址:https://jikaoti.com/ti/5pzRFFFM
0
考研数学二
相关试题推荐
[*]
[*]
用根值判别法(柯西判别法)判定下列级数的敛散性:
一平面圆环形,其内半径为10cm,宽为0.1cm,求其面积的精确值与近似值.
某闸门的形状与大小如图所示,其中直线2为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3(b>0),其中二:次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出
随机试题
f(x)=是__________分布的密度函数.
A、小檗碱B、皂苷类成分C、丁香酚钠D、黏液质E、儿茶素黄连的主要成分是
患者,女性,30岁,因结核性胸膜炎长期肌内注射链霉素,在注射过程中,护士应特别注意
招标投标文件的编制原则之一是:应按()的有关规定和地方政府有关规定和要求编制。
技术分析的理论基础是:市场永远是对的;价格沿趋势移动;历史会重复。()
要素计点法的操作步骤如下()。
人民教师职业道德规范的核心是()。
考古发掘的遗址实物是研究历史的第一手资料。最能证明“中国是水稻的故乡”的遗址是()。
垂直迁移,又称纵向迁移,指处于不同抽象、概括水平的经验之间的相互影响。下列各项中,体现了垂直迁移的是()。
BecauseTomcheatedintheexam,hewas______thechanceofgoingtouniversity.
最新回复
(
0
)