首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
admin
2017-01-14
25
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
-1
AP=A。
选项
答案
(Ⅰ)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
-1
AP
1
=B,因此矩阵A与B相似,则 |λE-B|=[*]=(λ-1)
2
(λ-4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。 (Ⅱ)由(E-B)x=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;由(4E-B)x=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
)= [*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*] =(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
)时,有 P
-1
AP=Λ=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/5fwRFFFM
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
微分方程xy’+y=0满足条件y(1)=1的解是y=________.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
基金公司为其客户提供几种不同的基金:一个货币市场基金,三种债券基金(短期债券、中期债券和长期债券),两种股票基金(适度风险股票和高风险股票)以及一个平衡基金.在所有只持有一种基金的客户中,持有各基金的客户比例分别为货币市场20%高
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
随机试题
改正下面句子的说法:“乌鸦”的“乌”字拼音是ū。
20世纪根据现有资料80%以上的人类癌症系由所引起。
A.ⅡB.ⅦC.ⅨD.ⅫE.临床有出血症状且APTT正常,PT正常可见于哪种因子缺陷症
患者,男,35岁。右膝关节轻微外伤后出现关节不适、肿胀,伴有关节交锁。查体:关节肿胀,髌上可扪及包块压痛,浮髌试验(+),McMurray征(﹣),抽屉试验(﹣),轴移试验(﹣),关节穿刺可见深色血性黏液。该患者最可能的诊断为
王某,28岁,胃穿孔并发弥漫性腹膜炎手术后第6天,出现发热、寒战,右上腹疼痛,伴有呃逆,应首先考虑
A.孕8周B.孕16周C.孕20周D.孕24周E.孕28周
设计概算的内容中不包括()。
材料:齐白石先生幼年家境贫寒,没有上学的机会,长大后做了木工,四十岁以后才开始自学绘画。他虚心求教,勤学苦练,终于在画坛独树一帜,成为著名的国画大师。问题:在齐白石先生的成才过程中哪些因素起了关键作用?对你有何启示?
1.水泥路修到了家门口,无害化厕所正在普及,返乡创业迎来了热潮……如今的乡村,正行驶在振兴发展的快车道上。与此同时,也面临不少沟坎:脱贫攻坚正在进入啃硬骨头阶段、产业绿色发展仍需提质、农村环境和人居环境亟须改善,等等。爬坡过坎,需要落实好习近平总书记的要求
下列关于综合布线的描述中,正确的是()。
最新回复
(
0
)