首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前五列.
设α1,α2,…,αk(k<n)是Rn中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前五列.
admin
2016-04-11
42
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中七个线性无关的列向量,证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前五列.
选项
答案
取齐次线性方程组[*]=0的基础解系毒ξ
1
,…,ξ
n—k
,则可证α
1
,…,α
k
,ξ
1
,…,ξ
n—k
线性无关:设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n—k
ξ
n—k
=0,两墙左乘(λ
1
α
1
+…+λ
k
α
k
)
T
,并利用α
1
ξ
1
=0,得‖ λ
1
α
1
+…+λ
k
α
k
‖
2
=0,→λ
1
α
1
+…+λ
k
α
k
)
T
=0,而α
1
,…,α
k
线性无关,故有λ
1
=…=λ
k
=0,→μ
1
ξ
1
+…+μ
n—k
ξ
n—k
=0,又ξ
1
+…+ξ
n—k
线性无关,故有μ
1
=…=μ
n—k
=0,于是证得α
1
,…,α
k
,ξ
1
,…,ξ
n—k
线性无关,令P=[α
1
… α
k
ξ
1
… ξ
n—k
],则P为满秩方阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/5EPRFFFM
0
考研数学一
相关试题推荐
设函数其中g(x)二阶连续可导,且g(0)=1.求f’(x).
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围。
A、2B、C、D、πC先作代换将反常积分化为定积分计算.如积分区间为对称区间,为简化计算,还应考察被积函数或其子函数的奇偶性.解
设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
设f(x,y)在区域0≤x≤1,0≤y≤1上连续,且f(0,0)=-1,计算
设A=,其中a<0,方程组Ax=0有非零解,A*是A的伴随矩阵,则方程组A*x=0的基础解系为()
一质量为m的飞机,着陆时的水平速度为v0,经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k>0).问从着陆点算起,飞机滑行的最长距离是多少?
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
随机试题
奇花异草:魔术花:奇香菊
A.【适应症】B.【不良反应】C.【药物相互作用】D.【注意事项】E.【禁忌】根据《化学药品和治疗用生物制品说明书规范细则》某药品与其他药品合并用药的注意事项应列在()。
某建设项目经批准的双代号网络施工进度计划如图1所示(单位:月)。施工过程中发生了如下事件。事件1:施工单位为了保证A工作的施工质量,扩大基底处理面积,导致费用增加3万元,A工作持续时间增加了1个月。事件2:项目施工9个月后,由于设计变更,总监理工程
会签内容应包括()。
正向市场中,多头投机者应买入远期月份合约。( )
关于国内生产总值(GDP),下列表述正确的是()①GDP不能准确反映社会分配和民生改善②GDP不能准确反映经济增长对资源环境的负面影响③GDP是指一个国家或地区的所有常住单位在一定时期内生产活动的最终成果④一
损失规避原则,是指大多数人对损失和获得的敏感程度不对称,面对损失的痛苦感要大大超过面对获得的快乐感。根据以上定义,下列没有体现出损失规避原则的是()。
下列语句中,错误的是()。
CulturalShock"Cultureshock"mightbecalledanoccupationaldiseaseofpeoplewhohavebeensuddenlytransplantedabroad.
A、Letherdaughterchoosetheprogrambyherself.B、Doaswhatotherparentsdo.C、Choosetheprogramthatsheisinterestedin.
最新回复
(
0
)