首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
admin
2018-05-21
32
问题
设α
1
,α
2
,…,α
n
为n个n维向量,证明:α
1
,α
2
,…,α
n
线性无关的充分必要条件是任一n维向量总可由α
1
,α
2
,…,α
n
线性表示.
选项
答案
设α
1
,α
2
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,…,α
n
,α一定线性相关,所以α可由α
1
,α
2
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,…,α
n
线性表示. 反之,设任一n维向量总可由α
1
,α
2
,…,α
n
线性表示, 取e
1
[*] 则e
1
,e
2
,…,e
n
可由α
1
,α
2
,…,α
n
线性表示,故α
1
,α
2
,…,α
n
的秩不小于e
1
,e
2
,…,e
n
的秩,而e
1
,e
2
,…,e
n
线性无关,所以α
1
,α
2
,…,α
n
的秩一定为n,即α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/50VRFFFM
0
考研数学一
相关试题推荐
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是()
设函数f(x)在[a,b]上连续,在(a,b)内可导且f(A)≠f(B),试证明存在η,ξ∈(a,b),使得
线性方程组Ax=b经初等变换其增广矩阵化为方程组无解,则a=()
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次为α1,α2,α3,若P=(α1,2α3,一α2),则P-1AP=()
设函数f(x)在[0,+∞)内二阶可导,且f(0)=f’(0)=0,并当x>0时满足xf"(x)+3x[f’(x)]2≤1一e—x.证明当x>0时,f(x)<x2.
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ3,…,Aξn一1=ξn,Aξn=0,且ξn≠0.(Ⅰ)证明ξ1,ξ2,…,ξn线性无关;(Ⅱ)求Ax=0的通解;(Ⅲ)求出A的全部特征值和特征向量,并证明A不可
随机试题
患者,男,10岁,低热、乏力、消瘦3个月。查体:颈部、腋窝淋巴结如蚕豆大,肝脾轻度大。胸部X线:上纵隔增宽,双肺野尚清晰。血红蛋白132g/L,白细胞9×109/L,PLT2lO×109/L。PPD试验(-)。可能的诊断是
______Methodemphasizesonwrittenlanguageandmemorizationofgrammaticalrules.
门静脉高压症最危急的并发症是
检验检测机构应当确保其相关测量和校准结果,能够溯源至国家标准,以保证检验检测结果的()。
在《建设工程施工合同(示范文本)》中,需要承、发包方根据工程实际进行细化的部分是()。
假设某一企业发生一笔数额较大的固定资产修理支出,须在超过1年的期间内分摊,这笔待摊费用应列入( )。
我国的建设工程监理在国际上属于()的范畴。
风险厌恶者更倾向于下列选择中的( )。
()的发现填补了湘西秦代古城考古的空白。
A、正确B、错误B事实细节的找寻和判断。根据原文Andit’sabsolutelynecessaryformetohavearaiseorIcannotjustifykeepingthisjobanymore可知讲话
最新回复
(
0
)