首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(98年)设矩阵A= 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使.B与A相似;并求七为何值时,B为正定矩阵.
(98年)设矩阵A= 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使.B与A相似;并求七为何值时,B为正定矩阵.
admin
2019-03-19
53
问题
(98年)设矩阵A=
矩阵B=(kE+A)
2
,其中k为实数,E为单位矩阵.求对角矩阵A,使.B与A相似;并求七为何值时,B为正定矩阵.
选项
答案
由|λE-A|=[*]=λ(λ-2)
2
=0 得A的特征值为λ
1
=λ
2
=2,λ
3
=0. 记对角矩阵 [*] 因A是实对称矩阵,故存在正交矩阵P,使得 P
-1
AP=P
T
AP=D 所以A=PDP
-1
于是 B=(kE+A)
2
=(kPP
-1
+PDP
-1
)
2
=[P(kE+D)P
-1
]
2
=P(kE+D)P
-1
P(kE+D)P
-1
=P(kE+D)
2
P
-1
=[*] 由此可得 [*] 亦可由A的特征值为:2,2,0,得kA+A的特征值为:k+2,k+2,k,进而得B=(kE+A)
2
的特征值为:(k+2)
2
,(k+2)
2
,k
2
,从而得实对称矩阵B相似于对角阵A. 由上面的结果立刻得到:当k≠-2,且k≠0时,B的特征值均为正数,这时B为正定矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/4uBRFFFM
0
考研数学三
相关试题推荐
设矩阵行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
设(a2n—1+a2n)收敛,则()
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的微分方程=0变换为y=y(x)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设f(x)=3x2+Ax—3(x>0),A为正常数,则A至少为________时,有f(x)≥20(x>0)。
微分方程y’=1+x+y2+xy2的通解为________。
设求An。
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=x2,求曲线C2的方程.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
设求a,b,c,d的值.
设数列{xn}由递推公式xn=(n=1,2,…)确定,其中a>0为常数,x0是任意正数,试证xn存在,并求此极限.
随机试题
快速冷冻法中,解冻红细胞后,第一次洗涤应加入
患者,男,70岁。突然昏仆,不省人事,半身不遂,口眼喁斜,牙关紧闭,两手握固,面白唇暗,静卧不烦,四肢不温,痰涎壅盛,舌苔白腻,脉沉滑。其辨证为
单纯性高血压无其他合并症,应进行治疗后再拔牙的血压为高于()
代理人须以代理人自身的名义进行代理行为。()
乙公司有个塔吊,甲和乙公司签订了代理合同,甲代理乙公司将该塔吊出售。根据代理法律制度的规定,甲的下列情况中,属于滥用代理权的有()。
下列属于无形资产特征的有()。
如图,四棱锥5-ABCD中,底面ABCD为矩形,5D上底面ABCD,,DC=SD=2,点M在侧棱SC上,∠ABM=60°。证明:M在侧棱SC的中点。
教育目标分类中“接受、反映、价值判断、组织、价值观或价值观体系的个性化”属于()。
宏观调控指政府为实现宏观(总量)平衡,保证经济持续、稳定、协调增长,而对货币收支总量、财政收支总量和外汇收支总量的调节与控制。下列措施中不属于宏观调控的有()。
SevenWaystoCreateaHappyHouseholdA)Everyfamilyisdifferent,withdifferentpersonalities,customs,andwaysofthin
最新回复
(
0
)