设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为 (0,1)内任意一点. (1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式; (2)证明:|f’(c)|≤2a+.

admin2018-01-23  71

问题 设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为
(0,1)内任意一点.
(1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
(2)证明:|f’(c)|≤2a+

选项

答案(1)f(x)=f(c)+f’(c)(x-c)+[*](x-c)2,其中ξ介于c与x之间. (2)分别令x=0,x=1,得 f(0)=f(c)-f’(c)c+[*]c2,ξ1∈(0,c), f(1)=f(c)+f’(c)(1-c)+[*](1-c2),ξ2∈(c,1), 两式相减,得f’(c)=f(1)-f(0)+[*](1-c)2,利用已知条件,得 |f’(c)|≤2a+[*][c2+(1-c)2], 因为c2+(1-c)2≤1,所以|f’(c)|≤2a+[*].

解析
转载请注明原文地址:https://jikaoti.com/ti/4lKRFFFM
0

最新回复(0)