首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率分别为 其中θ(0<θ<)是未知参数,利用总体X的如下样本值 3,1,3,0,3,1,2,3 求θ的矩估计值和最大似然估计值.
设总体X的概率分别为 其中θ(0<θ<)是未知参数,利用总体X的如下样本值 3,1,3,0,3,1,2,3 求θ的矩估计值和最大似然估计值.
admin
2018-07-30
28
问题
设总体X的概率分别为
其中θ(0<θ<
)是未知参数,利用总体X的如下样本值
3,1,3,0,3,1,2,3
求θ的矩估计值和最大似然估计值.
选项
答案
先求矩估计 ∵E(X)=0×θ
2
+1×2θ(1-θ)+2×θ
2
+3×(1-2θ)=3-4θ ∴[*] 由题目所给的样本值算得 [*](3+1+3+0+3+1+2+3)=2 代入得[*]. 又求最大似然估计,本题中n=8,样本值χ
1
,…,χ
8
由题目所给,故似然函数为 L(θ)=[*]P{X=χ
i
}=P{X=0}[P(X=1)]
2
P(X=2)[P(X=3)]
4
=θ
2
.[2θ(1-θ)]
2
.θ
2
.(1-2θ)
4
=4θ
6
(1-θ)
2
(1-2θ)
4
∴lnL(θ)=ln4+6lnθ+2ln(1-0)+4ln(1-2θ) [*] 令[*]lnL(θ)=0,得24θ
2
-280+6=0, 解得θ=[*],而[*]不合题意,舍去, 故得θ的最大似然估计值为[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/4h2RFFFM
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的联合分布律为则在Y=1的条件下求随机变量X的条件概率分布.
10件产品中4件为次品,6件为正品,现抽取2件产品.(1)求第一件为正品,第二件为次品的概率;(2)在第一件为正品的情况下,求第二件为次品的概率;(3)逐个抽取,求第二件为正品的概率.
设N阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+α2+…+(n—1)αn—1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
设f(x)在[0,a]上一阶连续可导,f(0)=0.令.
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一1的特征向量.(1)求A;(2)求|A*+3E|.
设总体X~F(x,θ)=,样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X一3Y的相关系数.
随机试题
在牛乳培养基中可呈现“汹涌发酵”现象的厌氧菌是
某患者诉说在单位妇科普查时确诊“子宫颈中度糜烂”。护士告知她疗效较好、疗程最短的治疗方法是
在干燥环境中配制普通水泥混凝土不得选用:()
如今,我们已经生活在信息时代。我们掌握的数据库越来越全面,它不再只是我们手头的一点点可怜的数据,而是包括了与这些现象相关的大量甚至全部的数据。我们不再需要那么担心某个数据点对整套分析的不利影响。我们要做的就是接受这些纷繁的数据并从中受益,而不是以高昂的代价
法律体系是一个重要的法学概念,人们可以从不同的角度、不同的侧面来理解、解释和适用这一概念,但必须准确地把握这一概念的基本特征。下面关于法律体系的表述中哪种说法未能准确地把握这一概念的基本特征?()
请举例说明轻声的作用。(中国人民大学)
设函数f(χ)在|χ|<δ内有定义且|f(χ)|≤χ2,则f(χ)在χ=0处().
以下关于校验码的叙述中,正确的是______。
YouwillhearaconversationbetweenMissGreen,aneducationaljournalist,andProfessorWilson,anexpertineducationalstudi
A、Tothehospital.B、Tothebeach.C、Tohisuniversity.D、Tohishometown.D
最新回复
(
0
)