首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,十)已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
(1998年试题,十)已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
admin
2013-12-27
52
问题
(1998年试题,十)已知二次曲面方程x
2
+ay
2
+z
2
+2bxy+2xz+2yz=4可以经过正交变换
化为椭圆柱面方程η
2
+4ζ
2
=4,求a,b的值和正交矩阵P.
选项
答案
设二次型为f(x,y,z)=x
2
+ay
2
+=z
2
+2bxy+2xz+2yz则相应矩阵为[*]同时该二次型的标准形为f
1
(ξ,η,ζ)=η
2
+4ζ
2
,其相应矩阵为[*]由于正交变换也是相似变换,不改变矩阵的特征值,因此λ
1
=0,λ
2
=1,λ
3
=4也是矩阵A的特征值,由特征值多项式|A—λE|=0,有[*]将λ
1
=0,λ
2
=1,λ
3
=4代入,可解得a=3且b=1.以下计算相应的特征向量以构造正交变换阵P.当λ
1
=0,有Ax=0,ξ
1
=[*]当λ
2
=1,有(A—E)x=0,ξ
2
=[*]当λ
3
=4,有(A一4I)x=0,ξ
3
=[*]从而正交变换矩阵为[*]
解析
本题在求参数a,b时,亦可利用条件∑a
ij
=∑b
ij
和|A|=|B|来求得.
转载请注明原文地址:https://jikaoti.com/ti/4fcRFFFM
0
考研数学一
相关试题推荐
设向量组(Ⅰ):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问.a,b取何值时,r(Ⅰ)=r(Ⅱ),但(Ⅰ)与(Ⅱ
确定常数a使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(0,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设函数f(x)满足关系式f”(x)+[f’(x)]2=x,且f’(0)=0,则()
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设A=,求:可逆矩阵P,使PA为行最简形矩阵.
设(ai2+bi2≠0,i=1,2,3),证明三直线相交于一点的充分必要条件:向量组a,b线性无关,且向量组a,b,c线性相关.
举例说明下列各命题是错误的:若a1,a2,…,am线性相关,b1,b2,…,bm亦线性相关,则有不全为0的数λ1,…,λm,使λ1a1+…+λmam=0,λ1b1+…+λmbm=0同时成立.
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求二维随机变量(X,Y)的概率分布.
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
设Z;=Xi+Xn+i=1,2,…,n),为从总体Z中取出的样本容量为n,的样本.则E(Zi)=E(Xi)+E(Xn+i)=μ+μ=2μD(Zi)=D(Xi+Xn+i)=D(xi)+D(Xn+i)(Xi与Xn+i相互独立)=σ2+σ2=2σ2∴Z-N
随机试题
A.祛痰B.开窍C.二者均是D.二者均非(2002年第107,108题)皂荚具有的功效是()
设备工程项目信息表现形式多样并且有明显的系统性,在对设备工程项目信息进行编码时,应坚持()的原则。
在PowerPoint2003环境下,放映幻灯片的快捷键为__________。()
下列适用于家庭保健,尤其是出差和旅游使用的医疗器械是
阅读以下语文会考试题,按照要求答题。坚信一首诗的沉默比所有的扩音器加起来更清晰,比机枪的口才、野炮的雄辩更持久。坚信文字的冰库能冷藏最烫的激情、最新鲜的想象。时间,你带得走歌者带不走歌。阅读上述文字,下列哪个选项最接近这段文字的旨意?
根据所给材料,回答问题。继共享睡眠舱、共享雨伞、共享充电宝等共享模式之后,有高校学生推出共享厨房,某公交站台惊现共享马扎。日前,又有“共享健身房”出现在北京一小区内。共享业态究竟能释放出多少可能性,引人遐想。“逻辑可以让你从A走到B,但
(2012年浙江.111)人类科技发展的历程中,先后出现了下列科技词语:(1)电子计算机;(2)量子力学;(3)航天器;(4)转基因水稻。按时间先后顺序排列正确的是()。
长期生活在同一环境中的不同种植物常常表现为同一生活型,这是由于生物之间的结果。
Bethanyisworkingonamandatoryaccesscontrol(MAC)system.ShehasbeenworkingonafilethatwasclassifiedasSecret.She
Theworldhasneverbeenmorecloselyandintricatelyconnected.Ourbehavior【C1】______theenvironmentweallshare,andweare
最新回复
(
0
)