首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是
admin
2018-07-31
32
问题
设向量组α
1
,α
2
,α
3
线性无关,则下列向量组中线性无关的是
选项
A、α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
。
B、α
1
+α
2
,α
2
+α
3
,α
3
一α
1
.
C、α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
.
D、α
1
+α
2
+α
3
,2α
1
—3α
2
+22α
3
,3α
1
+5α
2
—5α
3
.
答案
C
解析
选项(C)中的3个向量分别为β
1
=α
1
+2α
2
,β
2
=2α
2
+3α
3
,β
3
=3α
3
+α
1
,则利用矩阵乘法可将此线性表示式写成[β
1
β
2
β
3
]=[α
1
α
2
α
3
]
,因α
1
,α
2
,α
3
线性无关,故矩阵[α
1
α
2
α
3
]为列满秩矩阵,而用列满秩矩阵左乘矩阵不改变矩阵的秩,于是
r[β
1
β
2
β
3
]=
=3
即知向量组β
1
,β
2
,β
3
线性无关,故选项(C)正确.
用上述方法也容易判别选项(D)中的3个向量线性相关.至于选项(A)、(B).由观察易知两组向量都是线性相关的.
转载请注明原文地址:https://jikaoti.com/ti/4c2RFFFM
0
考研数学一
相关试题推荐
设N阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+α2+…+(n—1)αn—1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是().
设A=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设三阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=_______。
随机试题
HistorianstendtotellthesamejokewhentheyaredescribinghistoryeducationinAmerica.It’stheone【C1】______theteacher
A.青霉素B.红霉素C.甲硝唑D.万古霉素血源性肺脓肿首选
给水管道防冻防结露的方法是对管道进行绝热,常用的绝热层材料有()。
因承包人超越其经营范围、资质等级签订的施工承包合同应当属于( )。
某股份有限公司为船舶制造企业。下列项目中,一定不包括在该股份有限公司建造合同成本中的有()。
处置投资性房地产时,与处置固定资产和无形资产的核算方法相同,其处置损益均计入营业外收入或营业外支出。()
根据《民法总则》《继承法》,下列遗嘱中,应认定有效的是()。
具有非凡的记忆力可以称为天才。()(2014·浙江)
20世纪后期,陕西凤雏村出土了刻有“凤”字的甲骨四片,这些“凤”字的形体大致相同,均为头上带有象征神权或王权的抽象化了的毛角的短尾鸟。东汉许慎《说文解字》云:“鸑鷟,凤属,神鸟也。……江中有鸑鷟,似凫而大,赤目。”据此,古代传说中鸣于岐山、兆示周王朝兴起的
关于唐朝刑法适用原则的表述,错误的有()。
最新回复
(
0
)