首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 若a0=1,a1=0,S(x)为幂级数的和函数. 证明(1-x)S’(x)-x(x)=0(x∈(-1,1)),并求S(x).
[2017年] 若a0=1,a1=0,S(x)为幂级数的和函数. 证明(1-x)S’(x)-x(x)=0(x∈(-1,1)),并求S(x).
admin
2019-03-30
54
问题
[2017年] 若a
0
=1,a
1
=0,
S(x)为幂级数
的和函数.
证明(1-x)S’(x)-x(x)=0(x∈(-1,1)),并求S(x).
选项
答案
[*]故[*] 因此,[*] 由于(n+1)a
n+1
=na
n
+a
n-1
,所以 [*] 即(1-x)S’(x)-xS(x)=0(x∈(-1,1)),结论得证. 解上述微分方程,得[*]两边积分得 lnS(x)=-x-ln(1-x)+C,C为常数, 即[*]又因S(0)=1,则C
1
=1,故[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/4UBRFFFM
0
考研数学三
相关试题推荐
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设A是n阶正定矩阵,证明:|E+A|>1.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设z=f(exsiny,x2+y2),且f(u,v)二阶连续可偏导,求.
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=x2,求曲线C2的方程.
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点,求L的方程.
设(an}与{bn)为两个数列,下列说法正确的是().
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当
设φ(x)是以2π为周期的连续函数,且ψ’(x)=φ(x),ψ(0)=0.(1)求方程y’+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
(2017年)某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,Xn相互独立且均服从正态分布N(μ,σ2)。该工程师记录的是n次测量的绝对误差Zi=|Xi-μ|(i=1,2,…,n),利用
随机试题
某医院用两种方法治疗重症肝炎,治疗组30例,存活16人,死亡14人,对照组30例,存活9人,死亡21。上述方法延续1年后,试验组增到58例,对照组为60例。试验组的存活率优于对照组。该试验组为哪种类型
居住在美国纽约的美籍华人张扬与中国公民李雯系夫妻。李雯以双方长期分居、夫妻感情破裂为由向人民法院起诉,要求与张扬离婚。此案应由哪一个法院管辖?
按照不同人群对风险的不同态度,可以划分的类型不包括()。
古希腊是欧洲文明的发祥地,在公元前5世纪,当时的主要建筑,如广场和公共建筑体现了()。
项目经济费用效益分析采用()对未来经济效益和经济费用流量进行折现。
下列采购费用中应记入“材料采购”账户的是()。
宋朝以来,没有做过我国国都的城市是()。
关于超级计算机,下列说法不正确的是()。
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
TheUnitedKingdomisalsoknownbyitsofficialname
最新回复
(
0
)