首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an. (2)当a为何值时,该方程组有唯一解?求x1. (3)当a为何值时,该方程组有无穷多解?求通解.
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an. (2)当a为何值时,该方程组有唯一解?求x1. (3)当a为何值时,该方程组有无穷多解?求通解.
admin
2020-09-25
93
问题
设n元线性方程组Ax=b,其中
(1)证明行列式|A|=(n+1)a
n
.
(2)当a为何值时,该方程组有唯一解?求x
1
.
(3)当a为何值时,该方程组有无穷多解?求通解.
选项
答案
(1)记D
n
=|A|.用数学归纳法证明D
n
=(n+1)a
n
. ①当n=1时,D
1
=2a,结论成立. ②当n=2时,D
2
=[*]=3a
2
,结论成立. 假设结论对小于n的情况成立,将D
n
按第一行展开,得 [*] 根据假设D
n-1
=na
n-1
,D
n-2
=(n一1)a
n-2
,可得 D
n
=2a.na
n-1
一a
2
(n一1)a
n-2
=(n+1)a
n
.所以结论对任意n成立. (2)当a≠0时,系数行列式D
n
=|A|≠0,方程组有唯一解,由克拉默法则,将D
n
第一列换成常数列b,得 [*] (3)当a=0时,方程组为[*] 由于[*]=R(A)=n一1<n,所以方程组有无穷多解,其通解为(0,1,0,…,0)
T
+k(1,0,0,…,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/4IaRFFFM
0
考研数学三
相关试题推荐
设u=e—xsin的值为_________.
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=__________。
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=___________.
设α=(1,-1,a)T,β=(1,a,2)T,A=E+αβT,且λ=3是矩阵A的特征值,则矩阵A属于特征值λ=3的特征向量是_________
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T,试讨论当a,b为何值时。(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3唯一地线性表示,并求出表
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求级数的和.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
患者,男性,18岁。背部痈9天,如果发生急性血源性骨髓炎一般多数首发部位是
阅读黎锦明的小说《银鱼曲》,结合作品实际,写一篇不少于600字的评价文章。要求:(1)简要阐述作品的主题思想;(2)简要分析作品的主要艺术特色;(3)观点鲜明,分析细致,条理清楚,语言通顺,书写整洁。(附黎锦明《银鱼曲》原文)
城市的()是确定城市性质的依据。
如果某数的补码是11111111,那么这个数是()。
风险识别风险类型,根据(),分为火灾、爆炸和泄漏三种类型。
砂锅:熬药()
因碰撞、挤压导致喜马拉雅山持续升高的两大板块分别是:
求f(x)=的间断点并判断其类型.
HowtoGettheMostfromYourCollegeProfessorI.Dailyroutineincollege—Getupinthemorning—Gotoattend(1)_____—Goan
Whywerethehumanitiessubjectsrequiredtobestudiedintheoriginalclassicaltext?Beingtownspeople,humanists______.
最新回复
(
0
)