首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
admin
2018-01-12
41
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
B、C
1
[φ
1
(x)一φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)一φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,
所以φ
1
(x)一φ
3
(x),φ
2
(x)一φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,
于是方程y"+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)一φ
3
(x)]+C
2
[φ
2
(x)一φ
3
(x)]+φ
3
(z)
即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1一C
1
一C
2
或C
1
+C
2
+C
3
=1,选(D).
转载请注明原文地址:https://jikaoti.com/ti/3oVRFFFM
0
考研数学一
相关试题推荐
计算
设f(x)在x=a的邻域内二阶可导且f’(a)≠0,则=__________.
一个罐子里装有黑球和白球,黑、白球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn.基于此,求未知参数a的矩估计和最大似然估计.
设随机变量U在[一2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y].
设X,Y,Z是三个两两不相关的随机变量,数学期望全为零,方差都是1,求X-Y和Y—Z的相关系数.
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程y’’+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为__________.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
设A=E+αβT,其中α=[a1,a2……an]T≠0,β=[b1,b2……bn]T=0,且αTβ=2.求A的特征值和特征向量;
随机试题
RisksforYouthsWhoEatWhatTheyWatchA)Manyfactorsinfluencechildren’sfoodchoices:wheretheyeat;whattheirfrien
简述“情势变迁”的基本内涵及其适用于国际条约的合理性。
出血性疾病病人的保健指导内容有
洗脱或展开溶剂为中性的情况下,一般不适合于生物碱分离的吸附剂有()
GB5101将砖分为若干等级,当建筑物外墙面为清水墙时,下列哪种等级可作为清水砖墙的选用标准?[2006—015]
期货交易所终止的,应当成立()。[2014年7月真题]
()不属于云南省世界遗产。
根据埃里克森的心理社会发展阶段理论,该生所处阶段的特点是()。
这里是典型的黄土高原沟壑区,水土流失非常严重。土地贫瘠,十年九旱。尽管有国家的好政策,使部分群众走上了致富的道路,但仍有不少农民挣扎在贫困线上。这段话主要说明了()。
贾某骑摩托车违章撞伤田某.造成田某腿部表皮破裂。贾某送田某到医院治疗,护士未作皮试,即给田某注射破伤风针.田某因药物过敏而死。贾某的行为对田某死亡而言属于:
最新回复
(
0
)