首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分上∫Ly2f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫(0,0)(1,1)y2f′(χ)dχ+2y[f′(χ)-χ]dy。
设曲线积分上∫Ly2f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫(0,0)(1,1)y2f′(χ)dχ+2y[f′(χ)-χ]dy。
admin
2017-11-30
27
问题
设曲线积分上∫
L
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫
(0,0)
(1,1)
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy。
选项
答案
令P(χ,y)=y
2
f′(χ),Q(χ,y)=2y[f′(χ)-χ], 已知该积分与路径无关,则有[*],即 2y[f〞(χ)-1]=2yf′(χ), 化简为f〞(χ)-f′(χ)=1,该方程为可分离变量方程,即[*]=dx两边同时积 分可得, f′(χ)=Ce
χ
-1, 代入初始条件f′(0)=0可得C=1,故f′(χ)=e
χ
-1,两边同时积分可得 f(χ)=e
χ
-χ+C
1
, 将初始条件f(0)=1代入,可得C
1
=0,故f(χ)=e
χ
-χ。 ∫
(0,0)
(1,1)
yf′(χ)dχ+2y[f(χ)-χ]dy与路径无关,则可选取折线路径简化计算, 其中L
1
:y=0,χ:0→1,L
2
:χ=1,y:0→1, ∫
(0,0)
(1,1)
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy=∫
(0,0)
(1,1)
y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy =[*]y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy+[*]y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy =∫
0
1
2(e-2)ydy=e-2。
解析
转载请注明原文地址:https://jikaoti.com/ti/3lVRFFFM
0
考研数学一
相关试题推荐
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
证明:
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足的解.
曲线的全部渐近线为__________.
记曲面z=x2+y2一2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,一2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
设函数y=f(x)由参数方程所确定,其中φ(t)具有二阶导数,且已知,证明:函数φ(t)满足方程
设曲线L是抛物柱面x=2y2与平面x+z=1的交线.求曲线L分别绕各个坐标轴旋转一周的曲面方程.
设曲线C:x2+y2+x+y=0,取逆时针方向,证明:
随机试题
蛮族法典中,在当时有很大权威性,并有着广泛影响的是()
对于流行性出血性结膜炎的说法,错误的是
下列哪项属于行政处罚
砖的强度等级用()表示。
下列各项中,不通过“银行存款”科目核算的有()。
会计资料最基本的质量要求是()。
关于定量研究和定性研究的说法,正确的是()。
下列合同,当事人一方有权请求人民法院或者仲裁机构变更或者撤销的是()。
AsnowleopardroarsinthehighmountainsofAsia.AblackrhinocerosgallopsacrosstheplainsofAfrica.Agrizzlybearhunts
A、Heboughtabighouseintheopenair.B、Heboughtclothesmadeofclothbagsandsacks.C、Heinvestedinhisapplebusinessa
最新回复
(
0
)