首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1; (Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1; (Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
admin
2019-04-22
45
问题
求下列二重积分:
(Ⅰ)I=
,其中D为正方形域:0≤x≤1,0≤y≤1;
(Ⅱ)I=
|3x+4y|dxdy,其中D:x
2
+y
2
≤1;
(Ⅲ)I=
ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=
所围成.
选项
答案
考察积分区域与被积函数的特点,选择适当方法求解. (Ⅰ)尽管D的边界不是圆弧,但由被积函数的特点知选用极坐标比较方便. D的边界线x=1及y=1的极坐标方程分别为 [*] 于是 [*] (Ⅱ)在积分区域D上被积函数分块表示,若用分块积分法较复杂.因D是圆域,可用极坐标变换,转化为考虑定积分的被积函数是分段表示的情形.这时可利用周期函数的积分性质. 作极坐标变换x=rcosθ,y=rsinθ,则D:0≤θ≤2π,0≤r≤1.从而 I=∫
0
2π
|3cosθ+4sinθ|dθ∫
0
1
.rdr =[*]∫
0
2π
sin(θ+θ
0
)|dθ, 其中sinθ
0
=[*],cosθ
0
=[*].由周期函数的积分性质,令t=θ+θ
0
就有 [*] (Ⅲ)D的图形如图8.27所示.若把D看成正方形区域挖去半圆D
1
,则计算D
1
上的积分自然选用极坐标变换.若只考虑区域D,则自然考虑先x后y的积分顺序化为累次积分.若注意D关于直线y=1对称,选择平移变换则最为方便. 作平移变换u=x,v=y-1,注意曲线[*] 即x
2
+(y-1)
2
=1,x≤0,则D变成D’. D’由u=-2,v=-1,v=1,u
2
+v
2
=1(u≤0)围成,则 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/3dLRFFFM
0
考研数学二
相关试题推荐
设λ=2是非奇异矩阵A的一个特征值,则矩阵有一特征值等于()
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
求极限
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
设。计算行列式|A|;
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
设三阶矩阵A的特征值为2,3,λ。若行列式|2A|=一48,则λ=________。
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
随机试题
某建设工程合同工期为25个月,经总监理工程师批准的施工总进度计划如下图所示。当该计划执行至7个月末时,发现施工过程D已完成,而施工过程E拖后两个月。由于E工作延误是承包人自身原因造成,故应采取工期一成本优化方式压缩后续关键工作持续时间保证目标工期。
我国法律在保护公民合法言论自由的同时,禁止利用互联网、通讯工具、媒体从事违法活动。这主要说明()。
一个优秀的领导人是不会脱离群众的。所以,如果一个领导人脱离群众,他就不是一个能够得到大多数群众拥护的人。以下哪项与上面的议论方式相似?
在4d轨道中,最多可容纳的电子数为()。
根据《劳动法》的规定,劳动就业的原则包括()
Stephen:Well,hello,stranger!______Gordon:No,IwenttoCaliforniaforafewweeks.Stephen:Oh,really?Wheredidyougo?
人工智能
Tobesuccessfulinajobinterview,youshouldtakecaretoappearmodestlydressed,avoidingtheextremesoftooelaborateor
Bothversionsofthemyth—theWestasaplaceofescapefromsocietyandtheWestasastageonwhichthemoralconflictsconfro
Thephysicalfitnessinstructor’scourseisofferedasa【21】Thisemploymentmustbe【22】tosportsadministration.Forthe【23】weo
最新回复
(
0
)