首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组 的系数矩阵记为A.若存在3阶矩阵B≠O使得AB=O,则( )
齐次线性方程组 的系数矩阵记为A.若存在3阶矩阵B≠O使得AB=O,则( )
admin
2019-03-11
34
问题
齐次线性方程组
的系数矩阵记为A.若存在3阶矩阵B≠O使得AB=O,则( )
选项
A、λ=-2且|B|=0
B、λ=-2且|B|≠0
C、λ=1且|B|=0
D、λ=1且|B|≠0
答案
C
解析
1 设B按列分块为B=[β
1
β
2
β
3
],则由题设条件,有
O=AB=[Aβ
1
Aβ
2
Aβ
3
]
所以Aβ
j
=0(j=1,2,3),即矩阵B的每一列都是方程组Ax=0的解.又B≠O,故B至少有一列非零,因而方程组Ax=0存在非零解,从而有
=(λ-1)
2
=0
得λ=1
另一方面,必有|B|=0,否则|B|≠0,则B可逆,于是由给AB=O两端右乘B
-1
,得A=O,这与A≠O矛盾,故必有|B|=0.
因此C正确.
2 同解1一样可说明必有|B|=0,同理有|A|=0,观察可知当λ=1时有|A|=
=0,故C正确.
转载请注明原文地址:https://jikaoti.com/ti/3dBRFFFM
0
考研数学三
相关试题推荐
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值。试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}。
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
设f(x)二阶连续可导,f"(0)=4,求下列极限。
已知A=是n阶矩阵,求A的特征值、特征向量并求可逆矩阵P使P-1AP=A.
A和B都是n阶矩阵.给出下列条件①A是数量矩阵.②A和B都可逆.③(A+B)2=A2+2AB+B2.④AB=cE.⑤(AB)2=A2B2.则其中可推出AB=BA的有()
设函数f(x)有任意阶导数,且f’(x)=f2(x),则当n>2时,f(n)(x)=________.
设t>0,则当t→0时,是t的n阶无穷小量,则n为().
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(x)]没有间断点。
设f(x)可导且f’(x0)=,则当△x→0时,f(x)在x0点处的微分dy是()
随机试题
某城市考上大学的学生中,女生的比例比男生高。根据这个事实,王老师认为本市女生学习比男生好。以下哪项最能削弱王老师的结论?
A.鼻皮样囊肿B.无鼻C.后鼻孔闭锁D.鼻筛面裂囊肿E.鼻裂胚胎发育时,颅面各突起彼此接合或融合处,上皮组织残留
男性,75岁,胃癌根治术后7天,剧烈咳嗽时,突然出现切口疼痛,并流出少量淡红色液体,病人最可能出现了
急性白血病常见临床表现不包括
施工招标中采用综合评分法评标,评定报价部分得分高低的评分标准可以采用( )。
景色:旅游:欣赏
从军队师职干部变为民政部门的服务对象,老李有一种深深的失落感,常常怀念在部队的时光,难以适应地方的休养生活。面对这种状况,社会工作者首先应采取的介入策略是()。
如何理解教育劳动对象的向师性?
已知∣a∣=∣b∣=2,(a+2b)·(a—b)=-2,则a与b的夹角为____________。
从1949年至1952年,党领导人民集中力量恢复国民经济,继续完成民主革命遗留的任务。与此同时,实际上开始了向社会主义的过渡。这期间的主要任务有
最新回复
(
0
)