首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两组n维向量α1,α2,…,αm与β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,kn,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则
设有两组n维向量α1,α2,…,αm与β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,kn,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则
admin
2018-07-31
46
问题
设有两组n维向量α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
m
,若存在两组不全为零的数λ
1
,λ
2
,…,λ
m
和k
1
,k
2
,…,k
n
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
一k
1
)β
1
+…+(λ
m
一k
m
)β
m
=0,则
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
+β
1
,…,α
m
+β
m
,α
1
一β
1
,…,α
m
一β
m
线性相关.
C、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
—β
1
,…,α
m
—β
m
线性无关.
答案
B
解析
由条件知有不全为零的数λ
1
,…,λ
m
,k
1
,…,k
m
,使λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+k
1
(α
1
—β
1
)+…+k
m
(α
m
—β
m
)=0,所以,向量组α
1
—β
1
,…,α
m
+β
m
,α
1
—β
1
,…,α
m
—β
m
必线性相关。
转载请注明原文地址:https://jikaoti.com/ti/3c2RFFFM
0
考研数学一
相关试题推荐
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设A是m×n阶矩阵,下列命题正确的是().
[*]
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是().
设齐次线性方程组为正定矩阵,求a,并求当|X|I=时XTAX的最大值.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设Y~,求矩阵A可对角化的概率.
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
随机试题
制定计划的主要步骤是:确立目标、________、作出决策。
西咪替丁和雷尼替丁属于
A.自体皮片移植B.同种异体皮片移植C.异种皮片移植D.A、B、C全是E.A、B、C全不是
A.心脏毒性增加B.肝毒性增加C.坏死性结肠炎D.有交叉耐药性E.可产生沉淀多柔比星与可能致肝功损害的药物配伍使用()。
下列哪项不属于审查起诉的必经程序?()
某劳动定额规定,不锈钢法兰电弧安装,DN80~DN100的每副时间定额为0.71工日,产量定额为()副/工日。
在进行两个投资方案比较时,投资者完全可以接受的方案有()。
依据《专利法》的有关规定,下列情形不可以授予专利权的有()。
再贴现率政策
在一个双向链表中,在*p结点之后插入结点*q的操作是()。
最新回复
(
0
)