[2015年] (I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x); (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式

admin2019-04-08  32

问题 [2015年] (I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);
(Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.

选项

答案(I)令f(x)=u(x)v(x),由 △f=f(x+△x)-f(x)=u(x+△x)v(x+△x)一u(x)v(x) =u(x+△x)v(x+△x)一u(x)v(x+△)+u(x)v(x+△)一u(x)v(x) =v(x+△)[u(x+△)一u(x)]+u(x)[v(x+△)-v(x)] =v(x+△)△u+u(x)△v, 得到 [*] (Ⅱ)由上题中f(x)的导数公式的形式易得到 f’(x)=[u1(x)u2(x)…un(x)]’一{[u1(x)]u2(x)…un(x)}’ =[u1(x)]’[u2(x)…un(x)]+u1(x)[u2(x)…un(x)]’ =u’1(x)u2(x)…un(x)+u1(x){[u2(x)]u3(x)…un(x)}’ =u’1(x)u2(x)…un(x)+u1(x)u’2(x)…un(x)+u1(x)u2(x)[u3(x)…un(x)]’ =… =u’1(x)u2(x)…un(x)+u1(x)u’2(x)…un(x)+…+u1(x)u2(x)…u’n(x).

解析
转载请注明原文地址:https://jikaoti.com/ti/3aoRFFFM
0

最新回复(0)