首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1(x)=x(1—2x),y2(x)=2x(1一x),y3(x)=x(ex一2x)是微分方程y”+p(x)y’+q(x)y=f(x)的3个解,其中p(x),q(x),f(x)是(0,+∞)上的连续函数,求此微分方程及其通解.
设y1(x)=x(1—2x),y2(x)=2x(1一x),y3(x)=x(ex一2x)是微分方程y”+p(x)y’+q(x)y=f(x)的3个解,其中p(x),q(x),f(x)是(0,+∞)上的连续函数,求此微分方程及其通解.
admin
2021-08-05
37
问题
设y
1
(x)=x(1—2x),y
2
(x)=2x(1一x),y
3
(x)=x(e
x
一2x)是微分方程y”+p(x)y’+q(x)y=f(x)的3个解,其中p(x),q(x),f(x)是(0,+∞)上的连续函数,求此微分方程及其通解.
选项
答案
注意到y
1
(x),y
2
(x),y
3
(x)的表达式中都有一2x
2
项,所以把它们每两个相减,得到 y
2
(x)一y
1
(x)=x,y
3
(x)一y
1
(x)=x(e
x
一1)是对应齐次方程的解,代入方程可解得 [*] 再将y
1
(x),p(x),q(x)一并代入原方程,可解得f(x)=2x.所以原方程为 [*] 根据齐次方程的解的性质,可知(y
2
(x)一y
1
(x))+(y
3
(x)一y
1
(x))=xe
x
也是齐次方程的解,且x,xe
x
线性无关,因此Y=C
1
x+C
2
xe
x
是齐次方程的通解. 另一方面,仍由方程的解的性质可知,y
*
=2y
1
(x)一y
2
(x)=一2x
2
是原方程的一个特解,因此原方程的通解为 y=C
1
x+C
2
xe
x
一2x
2
,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/3BlRFFFM
0
考研数学二
相关试题推荐
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求
二元函数f(x,y)=在点(0,0)处
A、1B、2C、3D、4A
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
求微分方程yy"=y’2满足初始条件y(0)=y’(0)=1的特解.
设B是元素全为1的n阶方阵(n≥2),证明:(E一B)一1=E一
设函数f(χ)可导且0≤f′(χ)≤(k>0),对任意的χn,作χn+1=f(χn)=(n=0,1,2,…),证明:χn存在且满足方程f(χ)=χ.
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
求下列极限:
设二次型f(x1,x2,x3)=2x12+2x22+2x32+2ax1x2+2ax2x3+2ax1x3,若a是使A正定的正整数,用正交变换把二次型f(x1,x2,x3)化为标准型,并写出所用正交变换。
随机试题
Listentothefollowingpassage.Altogetherthepassagewillbereadtoyoufourtimes.Duringthefirstreading,whichwillbe
依1947年元旦公布的《中华民国宪法》,由中央立法并执行的事项有()
securities________
男性患者,体重68kg,56岁,急性肠梗阻2天入院。入院时血压100/68mmHg,心率100次/分,呼吸频率24次/分。急查血K+4mmol/L、Na+138mmol/L、Cl-100mmol/L。补液应首选下列哪种液体
大模板安装安全技术交底的内容包括模板支撑工程的()等,并保留记录。
某房地产估价师运用市场法和假设开发法对一宗4270m2的商业用地于2007年10月21日的土地使用权价格进行评估,该宗地的剩余使用期限为39年,两种估价方法测算出的结果分别为2000元/m2和2300元/m2。假设2006年10月和2007年10月该区域
某建筑公司与某建设单位通过工程量清单招标投标,签订了某写字楼的施工总承包合同,该项目的施工险包括()。
所谓长期投资是指()。
()是违反治安管理行为的主体。
请从所给的选项中,选择最合适的一个,使之呈现一定的规律性:
最新回复
(
0
)