首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
admin
2017-08-28
28
问题
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,
在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
选项
答案
在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ) 设F(x)=f(x)gˊ(x)-fˊ(x)g(x),易知 F(a)=f(a)gˊ(a)-fˊ(a)g(a)=0, F(b)=f(b)gˊ(b)-fˊ(b)g(b)=0,在[a,b]上对F(x)用罗尔定理, 必存在ε∈(a,b),使fˊ(ε)=0 Fˊ(ε)=Fˊ(x)|x=ε=[fˊ(x)gˊ(x)+f(x)g〞(x)-f〞(x)g(x)-fˊ(x)gˊ(x)]|x=ε =[f(x)g〞(x)-f〞(x)g(x)]|x=ε=f(ε)g〞(ε)-f〞(ε)g(ε)=0 又因为g(ε)≠0,g〞(ε)≠0 所以 f(ξ)/g(ξ)=f"(ξ)/g"(ξ) ε∈(a,b)
解析
转载请注明原文地址:https://jikaoti.com/ti/38VRFFFM
0
考研数学一
相关试题推荐
x-y-z+4=0
设f(x)在(0,+∞)内二阶可导,在[0,+∞)有连续的导数,且f’’(x)>0(x>0),求证:F(x)=在(0,+∞)是凹函数.
若g(x),又f(x)在x=0处可导,则d/dx{f[g(x)]}|x=0_________.
(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中,写出此方程组的通解.
设随机变量X服从(0,θ)上的均匀分布,其中θ为未知参数,X1,X2,…,Xn为简单随机样本,求θ的最大似然估计量;
某工厂每天分3个班生产,事件Ai表示第i班超额完成生产任务(i=1,2,3),则至少有两个班超额完成任务的事件可以表示为().
A、连续,偏导数存在B、连续,偏导数不存在C、不连续,偏导数存在D、不连续,偏导数不存在C
设某人持有一个股票期权,那么他能在时刻T的一个固定的价格K买人一个单位的某种股票(如果他愿意的话).已知该股票每单位现在的价格为S(0)=y,未来时刻T的价格S(T)的百分比变化S(T)/S(0)服从参数为μ=0,δ2=T的对数正态分布,即S(T)=yeX
(2005年试题,16)求幂级数的收敛区间与和函数f(x).
设x→0时ax2+bx+c—cosx是比x2高阶无穷小,其中a,b,c为常数,则()
随机试题
语言获得
吸气时出现脉搏显著减弱或消失的现象可见于()
一台单相变压器的额定容量SN=50kVA,额定电压为10kV/230V,满载时二次侧端电压为220V,则其额定电流I1N和I2N分别为()。
变配电所指针式交流仪表准确度最低要求()。
下列各项中,属于会计基本职能的有()。
下列关于存货决策的表述中,正确的是()。
下面是某教师改良的“三圈环流”模型的制作方法的部分内容。结合材料说说该地理模型制作的意义。
刘某,男,24岁。2015年5月19日刘某在某洗浴中心与按摩女邹某发生了性关系。事后邹某向公安机关报案,声称刘某将其强奸,公安机关经审查后决定对该案立案侦查。在本案侦查过程中,如果公安机关需要讯问刘某,可以采取下列哪些措施?()
某县一辆载有50多名中小学生的中巴掉到水沟,全部遇难,县长引咎辞职。对此你有什么看法?你认为该事件反映了哪些更深层次的问题?
在SQLServer2000中,某数据库中有角色Role和用户User,User是Role角色的成员,且只属于该角色。先对Table表给Role只授予SELECT和DELETE权限,并授予User对T表具有SELECT、UPDATE和DENYDELE
最新回复
(
0
)