首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是对应齐次线性方程组AX=0的基础解系,k1,k2为任意常数,则AX=b的通解必是( ).
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是对应齐次线性方程组AX=0的基础解系,k1,k2为任意常数,则AX=b的通解必是( ).
admin
2021-01-19
57
问题
已知β
1
,β
2
是非齐次线性方程组AX=b的两个不同的解,α
1
,α
2
是对应齐次线性方程组AX=0的基础解系,k
1
,k
2
为任意常数,则AX=b的通解必是( ).
选项
A、k
1
α
1
+k
2
(α
1
一α
2
)+(β
1
-β
2
)/2
B、k
1
α
1
+k
2
(α
1
一α
2
)+(β
1
+β
2
)/2
C、k
1
α
1
+k
2
(β
1
一β
2
)+(β
1
-β
2
)/2
D、k
1
α
1
+k
2
(β
1
一β
2
)+(β
1
+β
2
)/2
答案
B
解析
利用解的结构定理即命题2.4.4.2求之.
解一 因α
1
,α
2
线性无关,由命题2.3.2.2知α
1
,α
1
+α
2
线性无关,α
1
,α
1
一α
2
也线性无关.又因1/2+1/2=1,由命题2.4.4.1知,(β
1
+β
2
)/2为AX=b的一特解,由命题2.4.4.2知,k
1
α
1
+k
2
(α
2
一α
1
)+(β
1
+β
2
)/2为AX=b的通解.仅(B)入选.
解二 因(A)中(β
1
一β
2
)/2不是AX=b的特解,而(C)中既没有特解,且β
1
+β
2
也不是AX=0的解,(D)中虽有特解,且α
1
与β
2
一β
1
均为AX=0的解,但α
1
与β
2
一β
1
的线性相关性无法确定,故(A),(C),(D)均不正确.仅(B)入选.
转载请注明原文地址:https://jikaoti.com/ti/32ARFFFM
0
考研数学二
相关试题推荐
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+B,B=.则(A-E)-1=______.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=_______。
微分方程+y=1的通解是____________.
设f(χ,y)在区域D:χ2+y2≤t2上连续且f(0,0)=4,则=_______.
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则=_________。
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求D绕x轴旋转一周所成的旋转体的体积V(a);
设f(χ)=处处可导,确定常数a,b,并求f′(χ).
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。求L的方程;
设函数f(x)在点x0的某邻域内有定义,且f(x)在点x0处间断,则在点x0处必定间断的函数为()
(2000年)已知向量组β1=,β2=,β3=与向量组α1=,α2=,α3=具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
随机试题
下列情况的汽车不属于报废车辆的是_______。
自动控制就是应用控制装置使控制对象(如机器、设备和生产过程等)自动地按照预定的规律变化或运行。()
A、processionB、professorC、missionD、pressureB画线部分读[s],其他选项的画线部分读[s]。
完整的门诊病历不包括
设备制造阶段进度控制监理工作细则包括( )。
根据《行政诉讼法》及司法解释,属于行政诉讼受案范围的情形包括()。
在个别资本成本中须考虑抵税因素的有()。
《关于推行地方各级政府工作部门权力清单制度的指导意见》规定,将地方各级政府工作部门行使的各项行政职权及其依据、行使主体、运行流程、对应的责任等,以()形式明确列示出来,向社会公布,接受社会监督。
体育的基本组织形式是______。
在蜂窝移动通信系统中,多址接入方法主要有频分多址接入,时分多址接入和(20)。
最新回复
(
0
)