首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶线性常系数齐次微分方程是 ( )
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶线性常系数齐次微分方程是 ( )
admin
2018-11-22
29
问题
具有特解y
1
=e
-x
,y
2
=2xe
-x
,y
3
=3e
x
的三阶线性常系数齐次微分方程是 ( )
选项
A、y’’’-y’’-y’+y=0
B、y’’’+y’’-y’-y=0
C、y’’’-6y’’+11y’-6y=0
D、y’’’-2y’’-y’+2y=0
答案
B
解析
根据题设条件,1,-1是特征方程的两个根,且-1是重根,所以特征方程为(λ-1)(λ+1)
2
=λ
3
+λ
2
-λ-1=0,故所求微分方程为y’’’+y’’-y’-y=0,故选(B).
或使用待定系数法,具体为:设所求的三阶常系数齐次线性微分方程是
y’’’+ay’’+by’+cy=0.
由于y
1
=e
-x
,y
2
=2xe
-x
,y
3
=3e
x
是上述方程的解,所以将它们代入方程后得
解得a=1,b=-1,c=-1.
故所求方程为y’’’+y’’-y’-y=0,即选项(B)正确.
转载请注明原文地址:https://jikaoti.com/ti/2r1RFFFM
0
考研数学一
相关试题推荐
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明:(Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0;(Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
设A,B为n阶矩阵,则下列结论正确的是().
平面π:Ax+By+z+D=0被柱面x2+4y2=4所截得的面积为___________.
设f(x)在[0,1]上连续,在(0,1)内可导,且=2.证明:(Ⅰ)存在c∈(0,1),使得f(c)=0;(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
设X1,X2,…,Xn是来自总体X~N(0,1)的简单随机样本,则统计量服从()
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y′+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
设B是秩为2的5×4矩阵,α1=(1,1,2.3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T都是齐次线性方程组BX=0的解向量.求BX=0的解空间的一个标准正交基.
微分方程y’’-7y’=(x-1)2的待定系数法确定的特解形式(系数的值不必求出)是________
求柱面x2+y2=ax(a>0)位于球面x2+y2+z2=a内的部分的面积.
利用中心极限定理证明:
随机试题
静脉麻醉药
建设用地规划管理的对象是()内土地的使用。
齿轮传动机构是机器中应用最广泛的传动机构之一。它是一种啮合传动,有许多特征,下述有关描述错误的是()。
当前,我国网信领域要求采用自主可控技术、产品、服务、系统的呼声越来越高,这里的“自主可控”强调的就是可控性。自主可控是实现网络安全的前提。换言之,________。因此,为了实现网络安全,首先要实现自主可控,再实现传统意义上的安全,最终结合其他各种安全措施
社会工作者在初次接触社区居民时,应当做到()。
Portfolios,dailyreportsandspeechdeliveringaretypicalmeansof______.
67522590453030( )
有老师和甲、乙、丙三个学生,现在老师的年龄刚好是这三个学生的年龄之和;9年后,老师的年龄将是甲、乙两个学生的年龄之和;又5年后,老师的年龄将是甲、丙两个学生的年龄之和;再3年后,老师的年龄将是乙、丙两个学生的年龄之和。那么现在老师的年龄是()岁。
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和条件(2)单独都不充分,条件(1)和
Therelianceoncreditreportsinhiringisbecomingwidespread.AsurveybytheSocietyforHumanResourceManagementfoundt
最新回复
(
0
)