首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: (1)A2: (2)A的特征值和特征向量; (3)A能否相似于对角矩阵,说明理由.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: (1)A2: (2)A的特征值和特征向量; (3)A能否相似于对角矩阵,说明理由.
admin
2018-09-20
33
问题
设向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,且满足条件α
T
β=0,记n阶矩阵A=αβ
T
,求:
(1)A
2
:
(2)A的特征值和特征向量;
(3)A能否相似于对角矩阵,说明理由.
选项
答案
(1)由A=αβ
T
和α
T
β=0,有 A
2
=AA=(αβ
T
)(αβ
T
)=α(β
T
α)β
T
=(β
T
α)αβ
T
=(α
T
β)αβ
T
=O,即A是幂零矩阵(A
2
=O). (2)利用(1)A
2
=O的结果.设A的任一特征值为λ,对应于λ的特征向量为ξ,则 Aξ=λξ. 两端左边乘A,得 A
2
ξ=λAξ=λ
2
ξ. 因A
2
=O,所以λ
2
ξ=0,ξ≠0,故λ=0,即矩阵A的全部特征值为0. 故由上易知方程组Ax=0的非零解即为A的特征向量.不妨设a
1
≠0,b
1
≠0,有 [*] 则A的对应于特征值0的特征向量为[*]k
1
,…,k
n-1
为不全为零的常数. (3)A不能相似于对角矩阵,因α≠0,β≠0,故A=αβ
T
≠O,r(A)=r≠0(其实r(A)=1).从而对应于特征值λ=0(n重)的线性无关的特征向量的个数是n一r≠n,故A不能对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/2fIRFFFM
0
考研数学三
相关试题推荐
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
设A,B均是n阶矩阵,证明AB与BA有相同的特征值.
设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
设f(x)连续,证明:
设函数z=(1+ey)cosx-yey,证明:函数z有无穷多个极大值点,而无极小值点.
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,=-1.证明:
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.求方程组AX=b的通解.
随机试题
班主任了解学生的基本方法是问卷法。
不孕症患者取子宫内膜应子宫输卵管碘油造影宜
题6~7:钢筋混凝土墙下条形基础,基础剖面及土层分布如图3-13所示。每延米长度基础底面处相应于正常使用极限状态下荷载效应的标准组合的平均压力值为250kN,土和基础的加权平均重度取20kN/m3,地基压力扩散角取θ=12°。
甲公司欲购买一批钢材,委托乙公司提供媒介服务。乙公司向甲公司介绍了卖钢材的丙公司,若甲、丙未能达成钢材买卖合同的,则关于报酬和居间费用的负担。对此下列表述中正确的是()。
2010年7月8日,甲、乙、丙拟共同出资设立一有限责任公司,并制定了公司章程,其有关要点如下:(1)公司注册资本总额为400万元;(2)甲、丙各以货币100万元出资。首次出资均为50万元,其余出资均应在公司成立之日起2年内缴付;乙以房屋作价出资200万元
在习近平新时代中国特色社会主义思想指导下,中国共产党领导全国各族人民,统揽(),推动中国特色社会主义进入了新时代。
下列选项中,可以适用中国刑法的是()。
(2014年东北师范大学)简述学记的教学思想以及历史地位。
1945年,在——上,决定成立“联合国”。
A:It’sgettingratherlate,Ihavetosaygoodbye.B:______
最新回复
(
0
)