首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a﹥0),若二次型f的标准形为f=y12+2y22+5y32,求a的值及所使用的正交变换矩阵。
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a﹥0),若二次型f的标准形为f=y12+2y22+5y32,求a的值及所使用的正交变换矩阵。
admin
2019-12-06
77
问题
已知二次型f(x
1
,x
2
,x
3
)=2x
1
2
+3x
2
2
+3x
3
2
+2ax
2
x
3
(a﹥0),若二次型f的标准形为f=y
1
2
+2y
2
2
+5y
3
2
,求a的值及所使用的正交变换矩阵。
选项
答案
二次型f的矩阵A=[*],特征方程为 |λE-A|=(λ-2)(λ
2
-6λ+9-a
2
)=0, 由标准形可知,A的特征值为λ
1
=1,λ
2
=2,λ
3
=5。 将λ=1代入特征方程,得a
2
-4=0,由a﹥0可知a=2, 此时A=[*]。 解(λ
i
E-A)x=0,得到特征值λ
i
(i=1,2,3)对应的特征向量分别为 α
1
=(0,1,﹣1)
T
,α
2
=(1,0,0)
T
,α
3
=(0,1,1)
T
。 由于实对称矩阵的不同特征值对应的特征向量必正交,故只需将α
1
,α
2
,α
3
单位化, [*]。 故所用的正交变换矩阵为 [*]。
解析
转载请注明原文地址:https://jikaoti.com/ti/2NtRFFFM
0
考研数学二
相关试题推荐
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的()
已知α1,α2,…,αt都是非齐次线性方程组Ax=b的解,如果c1α1+c2α2+…+ctαt仍是Ax=b的解,则c1+c2+…+ct=_________.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
考虑有一保险公司设计一个险种预计卖出n个保单,设Xj是第j个保单投保人在未来一个特定时期内发生索赔时保险公司的险赔金额,记S=X1+X2+…+Xn,则S是保险公司在这一保险期内向这n个投保人赔付的总金额.假设Xj均服从均值为5的指数分布且相互独立.保险公司
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.当k为何值时,A+kE为正定矩阵?
设函数x=x(t)由方程tcosx+x=0确定,又函数y=y(x)由方程ey-2-xy=1确定,求复合函数y=y(x(t))的导数
设函数y=f(x)在[a,b](a>0)连续,由曲线y=f(x),直线x=a,x=b及x轴围成的平面图形(如图3.12)绕y轴旋转一周得旋转体,试导出该旋转体的体积公式.
设f(x,y)具有二阶连续偏导数,证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
当x→0时,(1+xsin2x)a-1~1-cosx,求a.
随机试题
四位数字12.8、3.25、2.153、0.0284相加,若计算结果尚需参与下一步运算,则结果为()。
被估资产为某企业的彩电生产线,由于彩电供过于求,预计今后该生产线的利用率仅为70%。该生产线的规模经济效益指数为0.6,重置成本为1000万元,成新率为60%,功能性损耗为100万元,该生产线的经济性贬值额约为()
下列说法中正确的一项是()
下列各药,不属生化汤组成药物的是
A公司是一家烟花爆竹制造公司。该公司成立于2010年,主要负责人为裴某,主要业务为生产、销售烟花爆竹。主要产品品种包括:高空烟花和礼花弹类、中空烟花和小型组合类、低空烟花和36响等。该公司厂区分为南、北两个区域,南厂区为生活区和办公区.北厂区为生产区(企业
被喻为是现代建筑史上的一个重要里程碑的是()。
在坝、堤基或围堰中,由多排孔组成的高喷墙的施工顺序为()。
学前教育过程中最基本、最重要的人际关系是()。
中央财政用于“三农”支出的比重增加,使()。①城乡居民收入同步增长②农业基础地位得到加强③财政支农政策效果显著④农村经营体制得到完善
Duringthesummersessiontherewillbearevisedscheduleofservicesfortheuniversitycommunity.Specificchangesforinterc
最新回复
(
0
)