首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
admin
2018-01-23
39
问题
设f(x)二阶可导,f(0)=f(1)=0且
f(x)=-1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
选项
答案
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0, [*]f(x)=-1,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在 (0,1)内达到,即存在c∈(0,1),使得f((c)=-1,再由费马定理知f’(c)=0, 根据泰勒公式 f(0)=f(c)+f’(c)(0-c)+[*](0-c)
2
,ξ
1
∈(0,c) f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,ξ
2
∈(0,1) 整理得 [*] 当c∈(0,[*]]时,f’’(ξ
1
)=[*]≥8,取ξ=ξ
1
; 当c∈([*],1)时,f’’(ξ
2
)=[*]≥8,取ξ=ξ
2
. 所以存在ξ∈(0,1),使得f’’(ξ)≥8.
解析
转载请注明原文地址:https://jikaoti.com/ti/2LKRFFFM
0
考研数学三
相关试题推荐
设D={(x,y)|x2+y2≤R2,R>0},常数λ≠0,则积分(eλrcosθ-e-λrsinθ)rdr的值().
保险公司为50个集体投保人提供医疗保险.假设他们医疗花费相互独立,且花费(单位:百元)服从相同的分布律当花费超过一百元时,保险公司应支付超过百元的部分;当花费不超过一百元时,由患者自己负担费用.如果以总支付费X的期望值E(X)作为预期的总支付费,那么保
已知矩阵A=(Ⅰ)求A99,(Ⅱ)设3阶矩阵B=(a1,a2,a3)满足B2=BA.记B100=(β1,β2,β3,风),将Jβ1,β2,β3分别表示为a1,a2,a3的线性组合.
证明不等式
设函数f(x)在点x0的某邻域内有定义,且f(x)在点x0处间断,则在点x0处必定间断的函数为()
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x一e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
设行列式不具体计算D,试利用行列式的定义证明D=0.
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
当x→0+时,与等价的无穷小量是()
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(—1)ln(1+x2)低阶的无穷小,则正整数n等于()
随机试题
建设工程合同包括下列哪些合同?()
与家庭教育、社区教育相比,学校教育()
借方________
放射工作人员全身均匀照射时,防止随机性效应的年剂量当量限值是
血液中不易查到的HBV抗原是
易某拥有一套2006年底购买的面积为115m2、处于热销地段的商品住房,与甲房地产经纪机构(以下简称甲机构)协商委托出售事宜。易某开始希望住房售价为60万元,但了解房地产市场行情后,在正式签订委托协议时,将住房售价调高到70万元。最终,易某以68万元出售了
马来西亚A商行于10月18日发来传真,向上海B公司发盘出售木材一批,发盘中列明各项必要条件(数量、价格等),但未规定有效期限。上海B公司于当天收到传真后,寻找国内实际用户,于10月22日上午11时对上述发盘向马来西亚A商行于22日下午1时给上海B公司发来传
著名的“搬运生铁块”和“铁锹实验”是()做的。
古人云:“不谋全局者,不足以谋一域;不谋万世者,不足以谋一时。”这就告诉我们()。
解放军某部出动80辆汽车参加工地劳动,在途中要经过一个长120米的隧道。如果每辆汽车的长为10米,相邻两辆汽车相隔20米,那么,车队以每分钟500米的速度通过隧道,需要多少分钟?
最新回复
(
0
)