首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α,证明: (Ⅰ)矩阵B=[α,Aα,A4α]可逆; (Ⅱ) BTB为正定矩阵.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α,证明: (Ⅰ)矩阵B=[α,Aα,A4α]可逆; (Ⅱ) BTB为正定矩阵.
admin
2020-04-09
14
问题
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A
2
α线性无关,且A
3
α=3Aα一2A
2
α,证明:
(Ⅰ)矩阵B=[α,Aα,A
4
α]可逆;
(Ⅱ) B
T
B为正定矩阵.
选项
答案
(1)由A
3
α一3Aα一2A
2
α得到 A
4
α=A.A
3
α=3A
2
α一2A
3
α=3A
2
α一2(3Aα一2A
2
α)=一6Aα+7A
2
α, 则 [α,Aα,A
4
α]=[α,Aα,A
2
α][*]=[α,Aα,A
2
α]G. 因|G|=[*]=7≠0,α,Aα,A
2
α线性无关,故α,Aα,A
4
α线性无关,所以矩阵B可逆. 设k
1
α+k
2
Aα+k
3
A
4
α=0,即 k
1
α+k
2
Aα+k
3
(7A
2
α一6Aα)=0, 亦即 k
1
α+(k
2
一6k
3
)Aα+7k
3
A
2
α=0. 因α,Aα,A
2
α线性无关,故 k
1
=0,k
2
一6k
3
=0,7k
3
=0,即 k
1
=k
2
=k
3
=0, 所以α,Aα,A
4
α线性无关,因而矩阵B可逆. (2)因(B
T
B)
T
=B
T
(B
T
)
T
=B
T
B,故B
T
B为实对称矩阵. 又对任意X≠0,因B可逆,有BX≠0,于是有 X
T
(B
T
B)X=(BX)
T
(BX)>0, 故二次型X
T
B
T
BX是正定二次型,从而B
T
B为正定矩阵.
解析
(1)利用矩阵B的可逆性可构造矩阵证之.为此将B表示为两个可逆矩阵的乘积,也可利用向量组α,Aα,A
2
α线性无关的性质用定义证明.
(2)用定义证明X
T
B
T
BX为正定二次型.
转载请注明原文地址:https://jikaoti.com/ti/2HaRFFFM
0
考研数学三
相关试题推荐
设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.设随机变量U=max{X,Y},V=min{X,Y}.求Z=UV的分布;
设x≥一1,求∫01x(1一|t|)dt.
设且f[φ(x)]=lnx,求
设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:其中g(x)是f(x)的反函数.
计算(x2+y2)dxdy,其中D={(x,y)|x2+y2≤4,x2+y2≥2x}.
设A是三阶矩阵,其三个特征值为,则|4A*+3E|=________.
微分方程满足y|x=1=1的特解为________。
设函数z=f(x,y)(xy≠0)满足=y2(x2—1),则dz=________。
方程组有解的充要条件是_________.
函数,则极限()
随机试题
TelevisionTelevision——themostpervasiveandpersuasiveofmoderntechnologies,markedbyrapidchangeandgrowth—ismoving
几乎不引起锥体外系反应的抗精神病药物是:
A.近远中径在颌面宽而近颈部窄B.髓室顶与髓室底相距较近C.牙冠向舌侧倾斜,髓室偏向颊侧D.唇舌径在牙颈部最大E.根管较小,根管侧壁薄,仅厚1mm下颌恒磨牙开髓部位应在颌面偏向颊尖处,因为
办公建筑中,不属于服务用房的房间是:(2019年第39题)
在下列各项中,属于注册会计师及其所在的会计师事务所可依法承办的审计业务有()。
有M、N、O、P四个朋友,他们分别是音乐家、科学家、天文学家和逻辑学家。在少年时代,他们曾经在一起对未来做过预测,当时,M预测说:N无论如何也成不了科学家。N预测说:O将来要做逻辑学家。O预测说:P不会成为音乐家。P预测说:N成不了天文学家。事实上,只有逻
下列情形中,可能发生在西汉百姓生活中的是()。
理想的冠桩直径应为()。
在俄国社会主义革命取得胜利的初期,特别是实行新经济政策期间,列宁对苏维埃俄国如何建设社会主义进行了深刻的理论思考,提出了许多精辟的论述。这些论述是
A、 B、 C、 A
最新回复
(
0
)