首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交,证明:β=0, (Ⅱ)设α1,α2,…,αn-1为n-1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关
(I)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交,证明:β=0, (Ⅱ)设α1,α2,…,αn-1为n-1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关
admin
2016-03-18
37
问题
(I)设α
1
,α
2
,…,α
n
为n个n维线性无关的向量,且β与α
1
,α
2
,…,α
n
正交,证明:β=0,
(Ⅱ)设α
1
,α
2
,…,α
n-1
为n-1个n维线性无关的向量,α
1
,α
2
,…,α
n-1
与非零向量β
1
,β
2
正交,证明:β
1
,β
2
线性相关
选项
答案
(I)令[*],因为α
1
,α
2
,...,α
n
线性无关,所以r(A)=n,又因为α
1
,α
2
,...,α
n
与β正交,所以Aβ=0,从而r(A)+r(β)≤n,注意到r(A)=n,于是r(β)=0,即β为零向量 (Ⅱ)方法一: 令[*],B=(β
1
,β
2
),因为α
1
,α
2
,...,α
n-1
线性无关,所以r(A)=n-1,又因为α
1
,α
2
,...,α
n-1
与线性正交,所以AB=0,从而r(A)+r(B)≤n,注意到r(A)=n-1,所以r(B)≤1,即β
1
,β
2
线性相关 方法二: 令[*],因为α
1
,α
2
,...,α
n-1
线性无关,所以r(A)=n-1,因为α
1
,α
2
,...,α
n-1
与β
1
,β
2
正交,所以β
1
,β
2
为方程组AX=0的两个解,而方程AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关
解析
转载请注明原文地址:https://jikaoti.com/ti/2DPRFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,证明:∫abf(x)dx=∫xbf(y)dy=[∫abf(x)dx]2.
已知,设D为由x=0,y=0及x+y=t所围成的区域,求.
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB),证明:方程组BX=0与ABX=0是同解方程组。
设齐次线性方程组,其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时求出其通解。
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4)若
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
设A,B为两个n阶矩阵,下列结论正确的是()。
[*]先画出积分区域,如下图阴影部分所示.然后调换积分次序(先对y后对x)计算.这是因为被积函数为直接对x积分是无法求出结果的.解交换积分次序(先对y后对x)计算,得到:
以下广义积分中收敛的是().
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
随机试题
桑寄生的作用为
常出现"首剂现象"的抗高血压药物是
大豆油中脂肪酸含量高达85%的是
用离子交换法分离伪麻黄碱和麻黄碱或东莨菪碱和莨菪碱,分别用渗滤法得到稀酸提取液流经阳离子交换树脂柱,树脂用碳酸钠碱化(弱碱先被洗脱),用氯仿提取分别得到
软化系数小于()的岩石,是软化性较强的岩石,工程性质比较差。
下列属于资本市场的是( )。
初唐四杰指的是()
某省2016年上半年省内居民网络消费达1696.07亿元,同比增长45.13%。该省2015年上半年,省内居民网络消费额占2016年上半年的:
甲,乙两人同时在同一时间就同样的发明创造提交了申请专利,专利局将分别向各申请人通报有关情况,并提出多种解决这一问题的办法,不可能采用(2)的办法。
Peoplewereridinghorsesmuchearlierthanpreviouslythought,newarchaeologicalfindssuggest.Scientistshavenowtracedthe
最新回复
(
0
)