首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1. 证明: (1)存在ξ∈(0,1)使得f(ξ)=1—ξ; (2)存在两个不同的点η,ζ∈(0,1)使得f’(η)f’(ζ)=1.
已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1. 证明: (1)存在ξ∈(0,1)使得f(ξ)=1—ξ; (2)存在两个不同的点η,ζ∈(0,1)使得f’(η)f’(ζ)=1.
admin
2021-01-19
38
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1.
证明:
(1)存在ξ∈(0,1)使得f(ξ)=1—ξ;
(2)存在两个不同的点η,ζ∈(0,1)使得f’(η)f’(ζ)=1.
选项
答案
(1)令F(x)=f(x)-1+x,则F(x)在[0.1]上连续,且F(0)=-1<0,F(1)=1>0,于是由介值定理知,存在ξ∈(0,1)使得F(∈)=0,即f(ξ)=1-ξ. (2)在[0,ξ]和[ξ,1]上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得[*] 于是[*]
解析
(1)显然用闭区间上连续函数的介值定理;(2)为双介值问题,可考虑用拉格朗日中值定理,但应注意利用(1)的结论.
转载请注明原文地址:https://jikaoti.com/ti/1zARFFFM
0
考研数学二
相关试题推荐
求下列极限:
求过点(2,一3,1)和直线的平面方程.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。求L的方程;
已知以2,π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F"(x0)=0.
设V是向量组α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
设y(x)是初值问题的解,则∫0+∞xy’(x)dx﹦()
证明极限不存在.
随机试题
直销属于()
全国第一个农村革命根据地是()
下列行政行为中不收费的是
女性,58岁,患背部痈,体温40.2℃,畏寒,寒战,烦躁。肢体湿冷,面色苍白,脉搏120/min,血压12/9.33kPa(90/70mmHg),血pH7.3l。下列哪一项治疗是错误的
原发性肾病综合征,最常出现
以下哪种性格易发生高血压
下列关于城市化的含义,叙述不正确的是()。
社会保险制度的主要内容包括()。
Itisimpossibletoforeseehowlifewillworkout,butareasonableattemptshouldatleastbemadetoavoidtheobviouspitfal
TheAntarcticozone(臭氧)holeischangingweatherpatternsacrosstheSouthernHemisphere(半球),evenaffectingthetropics,scienti
最新回复
(
0
)