设A,B均为n阶矩阵,且AB=A+B,则 ①若A可逆,则B可逆; ②若B可逆,则A+B可逆; ③若A+B可逆,则AB可逆; ④A一E恒可逆。 上述命题中,正确的个数为( )

admin2019-01-19  72

问题 设A,B均为n阶矩阵,且AB=A+B,则
①若A可逆,则B可逆;    ②若B可逆,则A+B可逆;
③若A+B可逆,则AB可逆;    ④A一E恒可逆。
上述命题中,正确的个数为(    )

选项 A、1。
B、2。
C、3。
D、4。

答案D

解析 由AB=A+B,有(A—E)B=A。若A可逆,则
|(A一B)B|=|A—E|×|B|=|A|≠0,
所以|B|≠0,即矩阵B可逆,从而命题①正确。
    同命题①类似,由曰可逆可得出A可逆,从而AB可逆,那么A+B=AB也可逆,故命题②正确。   
    因为AB=A+B,若A+B可逆,则有AB可逆,即命题③正确。
    对:于命题④,用分组因式分解,即
AB一A一B+E=E,则有(A—E)(B一E)=E,
所以得A—E恒可逆,命题④正确。
    四个命题都正确,故选D。
转载请注明原文地址:https://jikaoti.com/ti/1rBRFFFM
0

最新回复(0)