首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题中 ①如果矩阵AB=E,则A可逆且A-1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
下列命题中 ①如果矩阵AB=E,则A可逆且A-1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
admin
2019-03-11
54
问题
下列命题中
①如果矩阵AB=E,则A可逆且A
-1
=B;
②如果n阶矩阵A,B满足(AB)
2
=E,则(BA)
2
=E;
③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;
④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。
正确的是( )
选项
A、①②。
B、①④。
C、②③。
D、②④。
答案
D
解析
如果A,B均为n阶矩阵,命题①当然正确,但是题中没有n阶矩阵这一条件,故①不正确。
例如
显然A不可逆。
若A,B为n阶矩阵,(AB)
2
=E,即(AB)(AB)=E,则可知A,B均可逆,于是ABA=B
-1
,从而BABA=E,即(BA)
2
=E。因此②正确。
若设
显然A,B都不可逆,但A+B=
可逆,可知③不正确。
由于A,B均为n阶不可逆矩阵,知|A|=|B|=0,且结合行列式乘法公式,有|AB|=|A||B|=0,故AB必不可逆。因此④正确。
综上分析,故选D。
转载请注明原文地址:https://jikaoti.com/ti/1iBRFFFM
0
考研数学三
相关试题推荐
设随机变量(X,Y)的联合密度为f(x,y)=,则P(X>5|y≤3)=_______.
设A=(aij)是三阶正交矩阵,其中a33=-1,b=(0,0,5)T,则线性方程组Ax=b必有一个解是______
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设g(x)连续,令φ(x)=,又f(x)在x=0处可导,且f’(0)≠0,求F(x)=f[φ(x)]在x=0处的导数.
求函数M=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也不可用α1,α2
设α1,α2,…,αs和β1β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1β2,…,βt线性无关.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
根据k的不同的取值情况,讨论方程x3-3x+k=0实根的个数。
若则为().
随机试题
引起心肌炎最常见的病毒是( )。
根据《中华人民共和国企业破产法》的规定,下列事项中,属于债权人会议职权的有()。
职业安全健康管理体系文件的结构,多数情况下采用手册、()以及作业指导书的方式。
登记账簿时,除银行的复写账簿外,不得使用()书写。
属于不真实的合同有()。
在填制记账凭证时,可以只填会计科目的编号,不填会计科目名称,以简化记账凭证的编制。()
被称为“金镶玉”的名茶“君山银针”属于()。
下列实验操作导致实验结果偏高的是()。
下列选项中,构成民法中的无因管理的是()
A、Shewon’tbeabletocome.B、She’snotgoingtograduate.C、Shehasaweektodothework.D、She’llvisithersisterinaweek
最新回复
(
0
)