首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为____________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为____________.
admin
2019-08-11
92
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若
β=α
1
+2α
2
一α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,
则Ax=β的通解为____________.
选项
答案
[*],k
1
,k
2
∈R
解析
由 β=α
1
+2α
2
一α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,可知β
1
=
均为Ax=0的解.
由于α
1
,α
2
线性无关,可知r(A)≥2.又由于Ax=O有两个线性无关的解β
1
一β
2
,β
2
一β
3
,可知Ax=0的基础解系中至少含有两个向量,也即4一r(A)≥2,即r(A)≤2.
综上,r(A)=2,Ax=0的基础解系中含有两个线性无关的向量,故β
1
一β
2
,β
2
一β
3
即为Ax=0的基础解系.故Ax=β的通解为
,k
1
,k
2
∈R.
转载请注明原文地址:https://jikaoti.com/ti/1fERFFFM
0
考研数学二
相关试题推荐
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.记P=(α1,α2,α3),求P-1AP=________.
设f(x)为(-∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t-x)f(x-t)dt,则F(x)是
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,-1,a+1,5)T线性相关,则a=_______.
设u=u(x,y)有二阶连续偏导数,证明:在极坐标变换x=rcosθ,y=rsinθ下有
设f(x,y)=则f(x,y)在点(0,0)处
四元方程组的一个基础解系是_______.
设η为非零向量,A=,η为方程组AX=0的解,则a=________,方程组的通解为______.
已知三阶矩阵A的行列式|A|=一3,A*为A的伴随矩阵,AT为A的转置矩阵。如果kA的逆矩阵为,则k=___________。
微分方程2y"=3y2满足初始条件y(-2)=1,y’(-2)=1的特解为_______.
随机试题
按结构的不同,锅炉包括火管锅炉、水管锅炉和()。
在各种垄断组织形式中出现较晚,但与其他形式相比更为复杂的一种高级垄断组织形式是()
三硝基甲苯侵入人体的途径为
分泌生长抑素的部位是
级差地租I和级差地租Ⅱ各有不同的表现形式,二者在本质上是不一致的,有着明显的区别。
【2013.四川泸州】“印度狼孩”的故事说明了()。
试论法律渊源的表现形式。
Attentiontodetailissomethingeveryonecanandshoulddo—especiallyinatightjobmarket.BobCrossley,ahuman-resourcesex
用户与操作系统打交道的手段称为( )
Johnalwaysfeelssluggishfirstthinginthemorning.Theunderlinedpartmeans______.(2014-70)
最新回复
(
0
)