首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点戈处的增量△y=+α,且y(0)=π,则y(1)=_________.
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点戈处的增量△y=+α,且y(0)=π,则y(1)=_________.
admin
2019-01-12
30
问题
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点戈处的增量△y=
+α,且y(0)=π,则y(1)=_________.
选项
答案
[*]
解析
首先尝试从△y的表达式直接求y(1).为此,设x=0,△x=l,于是△y=y(x
0
+△x)一y(x
0
)=y(1)一y(0)=y(1)一π,代入△y的表达式即得
y(1)一π=π+α ←→ y(1)=2π+α.
由于仅仅知道当△x→0时α是比△x较高阶的无穷小,而不知道α的具体表达式,因而从上式无法求出y(1).
由此可见,为了求出y(1)必须去掉△y的表达式中包含的α.利用函数的增量△y与其微分dy的关系可知,函数y(x)在任意点x处的微分
这是一个可分离变量方程,它满足初始条件y
x=0
=π的特解正是本题中的函数y(x),解出y(x)即可得到y(1).
将方程dy=
.
求积分可得ln|y|=*].
由初始条件y(0)=π可确定C=
.
转载请注明原文地址:https://jikaoti.com/ti/1f1RFFFM
0
考研数学一
相关试题推荐
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.
求证:若向量a、b、c不共面,则向量a×b,b×c,c×a也不共面.
求解微分方程
设f(x)是可导的函数,对于任意的实数s、t,有f(s+t)=f(s)+f(t)+2st,且f’(0)=1.求函数f(x)的表达式.
设总体X的密度函数为其中θ>0为未知参数,x1,X2,…,Xn为来自X的样本,比较这两个估计量,哪一个更有效?
已知(X,Y)服从二维正态分布N(μ1,μ2,σ2,σ2,ρ),则下列四对随机变量中相互独立的是().
判断下列结论是否正确,并证明你的判断.(I)若xn<yn(n>N),且存在极限,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又∈(a,b)使得极限=A,则f(x)在(a,b)有界;(Ⅲ)若=∞,则使得当0<|x-a|<δ时有界•
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
计算曲面积分,其中曲面∑是球面x2+y2+z2=a2的下半部分,γ是∑向上的法向量与z轴正向的夹角.
若则为()
随机试题
甲乙共同杀害丙被某市中级人民法院判处死刑立即执行,甲不服上诉,某省高级人民法院维持原判,案件至最高人民法院进行复核,下列表述正确的有()
项目成本核算的主体和中心任务是()
外资银行虽然具备相对完善、成熟的产品及管理方式,但进人中国后,在华的各项业务却常常遭受亏损。外资银行发行的产品具有极高的收益上限,同时也拥有极低的收益下限,这意味着产品收益的波动性过大。而由于国内理财业发展初始形成的以银行信誉为背景的刚性兑付深入人心,对于
曾多次登临青田石门洞,并赋诗赞美,使石门洞声名远扬的文人学士是()。
Everyonebecomesalittlemoreforgetfulastheygetolder,butmen’smindsdeclinemorethanwomen’s,accordingtotheresults
某俱乐部男、女会员的人数比是3:2,分为甲、乙、丙三组。已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3。求丙组中男、女会员的人数之比。
简述合同承受应具备的条件。
和谐社会
下列叙述中正确的是( )。
DoyouknowTim’sbrother?Heis______thanTim.
最新回复
(
0
)