设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记

admin2017-06-26  42

问题 设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记

选项

答案EYi=P(Xi+Xi+1=1)=P(Xi=0,Xi+1=1)+P(Xi=1,Xi+1=0)=2p(1-p),i=1,…,n, ∴[*]=2np(1-p), 而E(Y12)=P(Xi+Xi+1=1)=2p(1-p),∴DYi=E(Y12)-(EYi)2 =2p(1-p)[1-2p(1-p)],i=1.2,…,n. 若l-k≥2,则Yk与Yl独立, 这时cov(Yk,Yl)=0, 而E(YkYk+1) =P(Yk=1,Yk+1=1) =P(Xk+Xk+1=1, Xk+1+Xk+2=1)=P(Xk=0, Xk+1=1,Xk+2=0)+P(Xk=1, Xk+1=0, Xk+2=1)=(1-p)2p+p2(1-p)=p(1-p), ∴coy(Yk, Yk+1)=E(YkYk+1)-EYkEYk+1 =(1-p)-4p2(1-p)2, 故[*] 2np(1-p)[1-2p(1-p)]+[*] =2np(1-p)[1-2p(1-p)]+2(n-1)[p(1-p)-4p2(1-p)2] 2p(1-p)[2n-6np(1-p)+41)(1-p)-1].

解析
转载请注明原文地址:https://jikaoti.com/ti/1dSRFFFM
0

最新回复(0)