首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
admin
2018-11-21
51
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)sinxdx=0,∫
0
π
f(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
选项
答案
反证法.如果f(x)在(0,π)内无零点(或有一个零点,但f(x)不变号,证法相同),即f(x)>0(或<0),由予在(0,π)内,亦有sinx>0,因此,必有∫
0
π
f(x)sinxdx>0(或<0).这与假设相矛盾. 如果f(x)在(0,π)内有一个零点,而且改变一次符号,设其零点为a∈(0,π),于是在(0,a)与(a,π)内f(x)sin(x一a)同号,因此∫
0
π
f(x)sin(x一a)dx≠0.但是,另一方面 ∫
0
π
f(x)sin(x一a)dx=∫
0
π
f(x)(sinxcosa—cosxsina)dx =cosa∫
0
π
f(x)sinxdx—sina∫
0
π
f(x)cosxdx=0. 这个矛盾说明f(x)也不能在(0,π)内只有一个零点,因此它至少有两个零点.
解析
转载请注明原文地址:https://jikaoti.com/ti/1Y2RFFFM
0
考研数学一
相关试题推荐
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
将函数f(x)=x-1(0≤x≤2)展开成周期为4的余弦函数。
证明当x>0时,(x2-1)lnx≥(x-1)2。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
设随机变量X的概率密度为f(x)=令随机变量(Ⅰ)求Y的分布函数;(Ⅱ)求概率P{X≤Y}。
随机试题
以下符合茶艺师在服务宾客时礼貌举止的选项有哪些?
___________是指那些为执行政府的主要职能而采购或租用商品的各级政府单位。
下列不属于X线机辅助设备的是
患者,女,27岁。外阴部有成群水疱,互相融合,易破糜烂,灼热痛痒,同时伴有发热,尿频,尿急,尿痛,苔黄,脉弦。其治法是
辅助食品的添加原则,下列描述错误的是
居住物业的交易以居民个人的购买行为为主,交易规模较小,交易量也很小。()
三角高程测量时,距离大于()m时,要考虑地球曲率和大气折光的合成影响。
“学而不思则罔,思而不学则殆”指的是学习与——的关系。
若相似,则a=().
下列叙述中,正确的一条是______。
最新回复
(
0
)