首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
admin
2020-10-21
36
问题
求微分方程2y"+y’一y=(4—6x)e
-x
。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
选项
答案
(1)求齐次线性微分方程2y"+y’一y=0的通解. 齐次微分方程2y"+y’一y=0的特征方程为2r
2
+r—1=0,特征根为r
1
=一1,r
2
=[*], 故齐次线性微分方程的通解为 [*] (2)求非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的一个特解. 由于λ=一1是特征单根,故设其特解为y
*
=x(Ax+B)e
-x
,则 (y
*
)’=(2Ax+B)e
-x
一(Ax
2
+Bx)e
-x
. (y
*
)"=2Ae
-x
一2(2Ax+B)e
-x
+(Ax
2
+Bx)e
-x
. 将它们代入方程2y"+y’一y=(4—6x)e
-x
,得 —6Ax+(4A一3B)=一6x+4, 比较等式两边x同次幂的系数,得 [*] 所以y
*
=x
2
e
-x
. (3)非齐次线性微分方程2y"+y’一y=(4—6x)e
-x
的通解为 [*] (4)求微分方程2y"+y’—y=(4—6x)e
-x
满足条件y(0)=0,y’(0)=0的特解. [*] 由y(0)=0,y’(0)=0,得 [*] 故yY=x
2
e
-x
. 求y=x
2
e
-x
的单调区间与极值. y’=x(2一x)e
-x
,令y’=0,得驻点x
1
=0,x
2
=2,列表如下: [*] 故y=x
2
e
-x
的单调增区间为[0,2],单调减区间为(一∞,0],[2,+∞),极小值为y(0)=0, 极大值为y(2)=4e
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/1NARFFFM
0
考研数学二
相关试题推荐
向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可由向量组(I)α1,α2,…,αs线性表出,则必有()
积分()
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
下列函数中在[-2,3]不存在原函数的是
设f(x)可导且f’(x0)=,则当△x→0时,f(x)在x0点处的微分dy是()
微分方程y"-4y’=x2+cos2x的特解形式为()。
设函数f(x)是连续且单调增加的奇函数,φ(x)=(2μ-x)f(x-μ)dμ,则φ(x)是().
证明:当x<1且x≠0时,.
设实二次型f(x1,x2,x3)=(x1一x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数•(I)求f(x1,x2,x3)=0的解;(Ⅱ)求f(x1,x2,x3)的规范形.
[2012年]已知函数f(x)=,记a=f(x).若x→0时,f(x)一a与xk是同阶无穷小,求常数k的值.
随机试题
高热惊厥多发年龄在
下述情形中,不属于国家、集体医疗机构中的医师在执业活动中享有的权利是()
根据库伦土压力理论计算墙后主动土压力,下列正确的是()。
在固体废弃物的特点中,固体废弃物的危害具有的特性不包括()。
建设工程项目总承包方作为项目建设的一个参与方,其项目管理主要服务于( )。
基金管理公司中,每个投资管理人员每年接受合规性培训的时间不少于40小时。()
不考虑资金时间价值的前提下,投资回收期越短,投资获利能力越强。()
EnzoFerrariisnotwellknownoutsideItaly.(46)Evanashiscarswereracingtovictoryallovertheworld,themanatthehel
Attention,please!ThankyouforvisitingKentHospital.Thereareafewsimplerulesthatweaskvisitorstoabideby:
DeterminingtheAgeofthePlanetsandtheUniverseP1:Asthesolarnebula,alargerotatingcloudofinterstellardustandgas
最新回复
(
0
)