首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A一2B|___________.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A一2B|___________.
admin
2018-04-15
41
问题
设三阶矩阵A=(α,γ
1
,γ
2
),B=(β,γ
1
,γ
2
),其中α,β,γ
1
,γ
2
是三维列向量,且|A|=3,|B|=4,则|5A一2B|___________.
选项
答案
由5A一2B=(5α,5γ
1
,5γ)一(2β,2γ
1
,2γ
2
)=(5α一2β,3γ
1
,3γ
2
),得 |5A一2β|=|5α一2β,3γ
1
,3γ
2
|=9|5α一2β,γ
1
,γ
2
| =9(5|α,γ
1
,γ
2
|一2|β,γ
1
,γ
2
|)=63.
解析
转载请注明原文地址:https://jikaoti.com/ti/1CKRFFFM
0
考研数学三
相关试题推荐
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C,用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
设三元二次型f(x1,x2,x3)=xTAx的负惯性指数为q=1,且二次型的矩阵A满足A2-A=6E,则二次型xTAx在正交变换下的标准形是()
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
设I1=,其中a是正常数,试证明:I1>I2
设A是3阶矩阵,有特征值λ1=1,λ2=一1,λ3=2.A*是A的伴随矩阵,E是3阶单位矩阵,则=___________.
设线性齐次方程组(2E—A)x=0有通解x=kξ1=k(-1,1,1)T,其中k是任意常数,A是二次型f(x1,x2,x3)=xTAx的对应矩阵,且r(A)=1.(Ⅰ)问η1=(1,1,0)T,η=(1,一1,0)T是否是方程组Ax=0的解向量,
设有向量组A:a1=,问α,β为何值时:向量b不能由向量组A线性表示;
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
二阶常系数非齐次线性方程y”一4y’+3y=2e2x的通解为y=______.
随机试题
下列各项中,关于仲裁过程中的证据提供、收集和应用,说法正确的是()。
在Windows中,若要查找主文件名的倒数第二个字母是“A”且类型名中包含字母“B”的所有文件,应在“搜索”项中相应位置输入文件名_______。
毛泽东首次提出中国共产党的三大优良作风的党的会议是【】
诊断内分泌疾病,下列哪项较易于确定
采用平行结转分步法时,完工产品与在产品之间的费用分配是()。
下列各项免征或暂免征收个人所得税的是()。
如图7表示与人体新陈代谢相关的主要系统及其关系示意图,请根据图示回答:①表示的生理过程是指营养物质的________。
20世纪.水资源短缺尤其是水质性缺水成了世界共同面对的资源危机,污水处理顺理成章成为新兴朝阳产业。污水生物处理的实质就是通过微生物的新陈代谢活动,将污水中的有机物分解,从而达到净化污水的目的。人们希望通过污水处理改善水质。又希望采用低能耗、低资源消耗的技术
下列不属于软件设计阶段任务的是()。
PreservingNatureforFutureDemandsforstrongerprotectionforwildlifeinBritainsometimeshidethefactthatsimilarne
最新回复
(
0
)