首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶实对称矩阵A满足trA=-6,AB=C,其中 求k的值与矩阵A.
已知3阶实对称矩阵A满足trA=-6,AB=C,其中 求k的值与矩阵A.
admin
2021-02-25
37
问题
已知3阶实对称矩阵A满足trA=-6,AB=C,其中
求k的值与矩阵A.
选项
答案
由题设AB=C可知A(1,2,1)
T
=0,从而λ
1
=0为A的特征值,α
1
=(1,2,1)
T
为相应的特征向量; 又A(1,k,1)
T
=(-12,-12k,-12)
T
=-12(1,k,1)
T
,由此可知λ
2
=-12为矩阵A的特征值,α
2
=(1,k,1)
T
为相应的特征向量.因为λ
1
+λ
2
+λ
3
=trA=-6,所以λ
3
=6. 又因为实对称矩阵属于不同特征值的特征向量正交,故有α
T
1
α
2
=0,即(1,2,1)(1,k,1)
T
=0,解得k=-1. 设A的属于λ
3
=6的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,则显然α
T
1
α
3
=0,α
T
2
α
3
=0,即得到方程组: [*] 求得基础解系α
3
=(-1,0,1)
T
,即为A的属于λ
3
=6的特征向量. 由Aα
1
=0α
1
,Aα
2
=-12α
2
,Aα
3
=6α
3
,得 A(α
1
,α
2
,α
3
)=(0,-12α
2
,6α
3
), 即 [*] 故 [*]
解析
本题考查相似对角化的逆问题.用特征值与特征向量的定义Ax=λx,求特征值与特征向量.即若Ax=0有非零解x
0
.知0是A的特征值,x
0
是A的关于0特征值对应的特征向量,若Ax=λx,则λ是A的特征值,非零列向量x是A的关于特征值λ的特征向量.还可用λ
1
+λ
2
+λ
3
=trA求特征值.
转载请注明原文地址:https://jikaoti.com/ti/17ARFFFM
0
考研数学二
相关试题推荐
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
[*]
设函数z=f(x,y)满足,且f(x,0)=1,f′y(x,0)=x,则f(x,y)=().
设常数=__________.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
设有摆线x=φ(t)=t—sint,y=ψ(t)=1—cost(0≤t≤2π)的第一拱L,则L绕x轴旋转一周所得旋转面的面积S=________.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
(1999年试题,六)为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(如图1一3—9).已知井深30m,抓斗自重40N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s.在提升过程中,污泥以20N/s_的速率从抓斗缝隙中漏掉.现
设y1=ex,y2=x2为某二阶齐次线性微分方程的两个特解,则该微分方程为__________.
设μ=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且。
随机试题
______isnotapoliticaldivisionontheislandofGreatBritain.()
A.低剂量红霉素疗法B.大剂量红霉素治疗C.含顺铂等药物化学治疗D.抗结核治疗E.免疫治疗弥漫性泛细支气管炎的治疗
Gilbert综合征是由于
在一般配筋情况下,当混凝土体积较大时,钢筋垂直于声波时对测量误差影响较小。()
在浮动汇率制下,各国的汇率是可以浮动的,但是在现实中,各国往往根据自身()等因素确立本国的汇率制度。
关于账簿、凭证管理的说法,正确的是()。(2015年真题)
设I1=,其中a是正常数,试证明:I1>I2
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)*,则A*X=0的基础解系为().
SpeakerA:Goodmorning,sir.CanIhelpyou?SpeakerB:Yes,I’mleavingtoday.CanIhavemybillsettled?SpeakerA:Ofcours
Throughouthistorymanhasobservedsuchnaturalcyclesastherisingandsettingofthesun,theebbandflowoftheoceantide
最新回复
(
0
)