首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,am线性相关,且α1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak—1线性表示。
设向量组a1,a2,…,am线性相关,且α1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak—1线性表示。
admin
2019-06-28
34
问题
设向量组a
1
,a
2
,…,a
m
线性相关,且α
1
≠0,证明存在某个向量a
k
(2≤k≤m),使a
k
能由a
1
,a
2
,…,a
k—1
线性表示。
选项
答案
因为向量组a
1
,a
2
,…,a
m
线性相关,由定义知,存在不全为零的数λ
1
,λ
2
,…,λ
m
,使λ
1
a
1
+λ
2
a
2
+…+λ
m
a
m
=0。 因λ
1
,λ
2
,…,λ
m
不全为零,所以必存在k,使得λ
k
≠0,且λ
k+1
=…=λ
m
=0。 当k=1时,代入上式有λ
1
a
1
=0。又因为a
1
≠0,所以λ
1
=0,与假设矛盾,故k≠1。 当λ
k
≠0且k≥2时,有 [*] 因此向量a
k
能由a
1
,a
2
,…,a
k—1
线性表示。
解析
转载请注明原文地址:https://jikaoti.com/ti/10LRFFFM
0
考研数学二
相关试题推荐
设四元齐次线性方程组求:方程组(1)与(2)的基础解系;
设A,B为同阶方阵。若A,B相似,证明A,B的特征多项式相等;
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT。求矩阵A的特征值和特征向量。
曲线在(0,0)处的切线方程为__________。
1/2这里Z是X和Y的函数,跟通常不同,这里是分段函数.要考虑X与Z的独立性,先要确定X和Z的边缘分布,X的边缘分布是已知,因而需要确定的是Z的边缘分布,然后要求X和Z的联合分布.P{Z=1}=P{X+Y为偶数}=P{X=1,Y=1}+P{X
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变化下的标准形为2y12+y22。
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。证明α1,α2,α3线性无关;
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
求极限:.
比较下列积分值的大小:(Ⅰ)l1=ln3(x+y)dxdy,I0=(x+y)3dxdy,I3=[sin(x+y)]3dxdy,其中D由x=0,y=0,x+y=,x+y=1围成,则I1,I2,I3之间的大小顺序为
随机试题
理气剂的治疗证候是
肩关节脱位的临床表现包括()。
提示为结肠病变导致的腹泻的情况是
“以补为固”,补而兼疏的方剂是()
A.呼吸道传播B.虫媒传播C.性接触传播D.消化道传播E.血液传播登革病毒的传播方式是经
某生产化妆品的跨国公司,为使产品打进中国市场,在对中国市场进行深入调查分析后,决定以白领女性顾客群体作为其目标市场,集中营销。由于化妆品市场竞争激烈,为使自己的产品获得稳定的销路,该公司着力培养自己产品的特色,决定采取差别化的产品策略以区别于其他竞争对手。
下列哪些情形构成走私普通货物物品罪?
下面关于利率决定因素中的风险附加率的表述中正确的有()。
病毒的主要特性表现在如下哪几个方面?()Ⅰ.传染性Ⅱ.灵活性Ⅲ.破坏性Ⅳ.隐蔽性Ⅴ.常驻内存
根据域名代码规定,表示政府部门网站的域名代码是___________。
最新回复
(
0
)