首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=1,,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=1,,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
admin
2017-07-26
54
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=1,
,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
选项
答案
作辅助函数F(x)=f(x)+kx,则F(x)在[0,1]上连续,在(0,1)内可导,且F’(x)=f’(x)+k. 由f(0)=f(1)=1,[*]<F(0)<F(1). 由介值定理,存在点c∈([*],1),使得F(c)=F(0).因此,F(x)在[0,c]上连续,在(0,c)内可导,且F(0)=F(c).由洛尔定理,存在点ξ∈(0,c)[*](0,1),使得F’(ξ)=f’(ξ)+k=0,即f’(ξ)=一k.
解析
这是讨论函数在某点取定值的问题,可转化为导函数的存在性问题.
f’(ξ)=一k→f’(ξ)+k=0
→[f(x)+kx]’
x=ξ
=0
→F(x)=f(x)+kx的导数在(0,1)内有零点.
于是,我们只要验证F(x)在[0,1]上或其子区间上满足洛尔定理的全部条件.
转载请注明原文地址:https://jikaoti.com/ti/0wSRFFFM
0
考研数学三
相关试题推荐
[*]
3
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
证明:方程x=a+bsinx(其中a>0,b>0)至少有一个正根,并且它不超过a+b.
设x轴正向到方向l的转角为ψ,求函数f(x,y)=x2-xy+y2在点(1,1)沿方向z的方向导数,并分别确定转角ψ,使得方向导数有(1)最大值,(2)最小值,(3)等于0.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).[附表]
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
向量组a1,a2,…,as线性无关的充分条件是().
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
随机试题
6个月男婴,腹泻1周,大便初为黄绿色稀便,近2天大便深绿色,伴有脓血及黏液,镜检多量白细胞,病后发热,精神差。该患儿腹泻机制是
能够与人类免疫缺陷病毒特异性结合的CD分子是
[2012年第113题]下列项目方案类型中,适于采用净现值法直接进行方案选优的是()。
某施工单位发生生产安全事故,该单位主要负责人未立即组织事故抢救,在此情况下,相关部门可对其处以()罚款。
银行风险中的国家风险不包括()。
在PowerPoint中,不能对个别幻灯片内容进行编辑修改的视图是()。
一千个体积为1立方厘米的小立方体合在一起成为一个边长为10厘米的大立方体.表面涂油漆后再分开为原来的小立方体,这些小立方体中至少有一面被油漆涂过的数目是:
一只猫每天吃由食品A和食品B搅拌成的食物300克,食品A的蛋白质含量为10%,食品B的蛋白质含量为15%。如果该猫每天需要36克蛋白质,问食物中食品A的比重是百分之几?()
(甲)宋儒理学的代表人物中,如陆九渊的读书经验也有可取之处。《陆象山语录》有一则写道:“如今读书且平平读,未晓处且放过,不必太滞。”接着,他又举出下面的一首诗:“读书切戒在慌忙,涵泳工夫兴味长;未晓不妨权放过,切身须要急思量。”这就
在数据处理中,其处理的最小单位是()。
最新回复
(
0
)