首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分dz|x0-y0的定义; (2)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且dz|x0-y0=fx’(
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分dz|x0-y0的定义; (2)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且dz|x0-y0=fx’(
admin
2018-09-25
35
问题
(1)叙述二元函数z=f(x,y)在点(x
0
,y
0
)处可微及微分dz|
x
0
-y
0
的定义;
(2)证明下述可微的必要条件定理:设z=f(x,y)在点(x
0
,y
0
)处可微,则f
x
’(x
0
,y
0
)与f
y
’(x
0
,y
0
)都存在,且dz|
x
0
-y
0
=f
x
’(x
0
,y
0
)△x+f
y
’(x
0
,y
0
)△y;
(3)请举例说明(2)的逆定理不成立.
选项
答案
(1)定义:设z=f(x,y)在点(x
0
,y
0
)的某邻域U内有定义,且(x
0
+△x,y
0
+△y)∈U,则增量 △z=f(x
0
+△x,y
0
+△y)-f(x
0
,y
0
)[*]A△x+B△y+o(ρ), (*) 其中A,B与△x,△y都无关, [*] 则称f(x,y)在点(x
0
,y
0
)处可微, 并称A△x+B△y为z=f(x,y)在点(x
0
,y
0
)处的全微分,记为dz|
(x
0
,y
0
)
=A△x+B△y. (2)设z=f(x,y)在点(x
0
,y
0
)处可微,则(*)式成立,令△y=0,于是 [*] 证明了f
x
’(x
0
,y
0
)与f
y
’(x
0
,y
0
)存在,并且dz|
(x
0
,y
0
)
=f
x
’(x
0
,y
0
)△x+f
y
’(x
0
,y
0
)△y. (3)(2)的逆定理不成立,反例 [*] f
y
’ (0,0)=0都存在,但在点(0,0)处f(x,y)不可微.
解析
转载请注明原文地址:https://jikaoti.com/ti/0u2RFFFM
0
考研数学一
相关试题推荐
设f(x)在(a,+∞)内可导.求证:(Ⅰ)若x0∈(a,+∞),f′(x)≥α>0(x>x0),则f(x)=+∞;(Ⅱ)若f′(x)=A>0,则f(x)=+∞.
设b>a≥0,f(x)在[a,b]上连续,在(a,b)内可导,f(a)≠f(b),求证:存在ξ,η∈(a,b)使得
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中后k,M为常数,求证:f(x)<(x>1).
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
求引力:(Ⅰ)在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).(Ⅱ)设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对P
假设测量的随机误差X一N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
设S为球面x2+y2+z2=R2(R>0)的上半球的上侧,则下列表示式正确的是().
无穷级数的收敛区间为_________。
设则()
设求y’.
随机试题
工件在什么要求下需要进行刮削加工?它有哪些特点?
选择口腔护理药液,以下哪项是错误的
属正常女性骨盆的髂棘间径、髂嵴间径、骶耻外径、坐骨结节间径、耻骨弓角度分别为
患者,男性,22岁。因车祸致头部受伤,伤后当即昏迷1小时,清醒后诉头痛,有呕吐,右上肢肌力2级;脑脊液检查有红细胞。目前的关键处理措施是
某建筑工程,地下1层,地上16层。总建筑面积28000m2,首层建筑面积2400m2,建筑红线内占地面积6000m2。该工程位于闹市中心,现场场地狭小。施工单位为了降低成本,现场只设置了一条3m宽的施工道路兼作消防通道。现场平面呈长方形,在其斜对角
目前,我国的证券投资基金主要是封闭式契约型基金。()
关于可供出售金融资产,下列说法中,不正确的是()。
加强有关社会治安综合治理的(),是落实综合治理的关键。
假设用12个二进制位表示数据。它能表示的最大无符号整数为(8);若采用原码,它能表示的最小负整数为(9)。
A、Thewomandoesn’tliketodrinktea.B、Thewomanhasspilledthetea.C、Themanfeelssorrytoirritatethewoman.D、Themans
最新回复
(
0
)