首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式 ①PA=B; ②P-1ABP=BA; ③P-1AP=B; ④PTA2P=B2 成立的个数是 ( )
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式 ①PA=B; ②P-1ABP=BA; ③P-1AP=B; ④PTA2P=B2 成立的个数是 ( )
admin
2019-02-18
22
问题
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式
①PA=B; ②P
-1
ABP=BA; ③P
-1
AP=B; ④P
T
A
2
P=B
2
成立的个数是 ( )
选项
A、1
B、2
C、3
D、4
答案
C
解析
逐个分析关系式是否成立.
①式成立.因为A,B均是N阶可逆矩阵,故存在可逆矩阵Q,w,使QA=E,WB=E(可逆矩阵可通过初等行变换化为单位矩阵),故有QA=WB,W
-1
QA=B.记W
-1
Q=P,则有PA=B成立,故①式成立.
②式成立.因为A,B均是n阶可逆矩阵,可取P=A,则有A
-1
(AB)A=(A
-1
A)BA=BA,故②式成立.
③式不成立.因为A,B均是n阶实对称矩阵,它们均可以相似于对角阵,但不一定相似于同一个对角阵,即A,B不一定相似.例如
(均满足题设的实对称可逆阵的要求),
但对任意可逆阵P,均有P
-1
AP=P
-1
EP=E≠B,故③式不成立.
④式成立.因为A,B均是实对称可逆矩阵,其特征值均不为零,A
2
,B
2
的特征值均大于零.故A
2
,B
2
的正惯性指数为n(秩为n,负惯性指数为0),故A
2
B
2
,即存在可逆阵P,使得P
T
A
2
P=B
2
.故④式成立.
由以上分析,故应选C.
转载请注明原文地址:https://jikaoti.com/ti/0p1RFFFM
0
考研数学一
相关试题推荐
设A=,则A-1=________.
设且A~B;求可逆矩阵P,使得P-1AP=B.
N维列向量组α1,…,αn-1线性无关,且与非零向量β正交,证明:α1,…,αn-1,β线性无关.
设随机变量X的概率密度函数为fX(x)=,则Y=2X的密度函数为fY(y)=_______.
在曲线x=t,y=一t2,z=t3的所有切线中,与平面x+2y+z一4=0平行的切线有().
设总体X的密度函数为f(x,θ)=(一∞<x<+∞),求参数θ的矩估计量和最大似然估计量.
设μ=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数,证明:.
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
设A是5×4矩阵,r(A)=4,则下列命题中错误的为
设则下列选项中是A的特征向量的是()
随机试题
按照韵头的情况,普通话中的韵母可以分为_____。
土地所有权、使用权和土地他项权利的设定土地登记的特点有()。
热力管道土建结构顶面与电车路基之间的最小净距离为()。
关于招标文件与资格预审文件的出售,说法正确的是()。
以同业拆借利率为基准利率的国家不包括()。
我国个人信贷产品可基本划分为()两大类。
国务院印发了《基本养老保险基金投资管理办法》,下列关于该《办法》的说法错误的是:
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和(2)单独不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)充分。E.条件(1)和(2)单独都
Readthearticlebelowaboutfocusoncustomer,andthequestionsontheoppositepage.Foreachquestion(13-18),markonelette
HomeschoolingMoreandmoreparentsarefeeling/thattheschoolsarenotuptoasuitablestandardrequiredtomeettheirch
最新回复
(
0
)